Awesome
VoxPopuli
https://aclanthology.org/2021.acl-long.80
A large-scale multilingual speech corpus for representation learning, semi-supervised learning and interpretation.
Overview
VoxPopuli provides
- 400K hours of unlabelled speech data for 23 languages
- 1.8K hours of transcribed speech data for 16 languages
- 17.3K hours of speech-to-speech interpretation data for 15x15 directions
- 29 hours of transcribed speech data of non-native English intended for research in ASR for accented speech (15 L2 accents)
The raw data is collected from 2009-2020 European Parliament event recordings. We acknowledge the European Parliament for creating and sharing these materials.
Detailed statistics
<details><summary>Unlabelled and transcribed data</summary><p>Language | Code | Unlabelled Hours (v1/v2) | Transcribed Hours | Transcribed Speakers | Transcribed Tokens | LM Tokens |
---|---|---|---|---|---|---|
English | En | 4.5K/24.1K | 543 | 1313 | 4.8M | 60.1M |
German | De | 4.5K/23.2K | 282 | 531 | 2.3M | 50.0M |
French | Fr | 4.5K/22.8K | 211 | 534 | 2.1M | 58.6M |
Spanish | Es | 4.4K/21.4K | 166 | 305 | 1.6M | 57.4M |
Polish | Pl | 4.5K/21.2K | 111 | 282 | 802K | 13.6M |
Italian | It | 4.6K/21.9K | 91 | 306 | 757K | 52.1M |
Romanian | Ro | 4.5K/17.9K | 89 | 164 | 739K | 10.3M |
Hungarian | Hu | 4.4K/17.7K | 63 | 143 | 431K | 13.0M |
Czech | Cs | 4.5K/18.7K | 62 | 138 | 461K | 13.5M |
Dutch | Nl | 4.5K/19.0K | 53 | 221 | 488K | 54.6M |
Finnish | Fi | 4.4K/14.2K | 27 | 84 | 160K | 34.5M |
Croatian | Hr | 2.7K/8.1K | 43 | 83 | 337K | 285K |
Slovak | Sk | 4.4K/12.1K | 35 | 96 | 270K | 13.3M |
Slovene | Sl | 4.4K/11.3K | 10 | 45 | 76K | 12.6M |
Estonian | Et | 4.3K/10.6K | 3 | 29 | 18K | 11.3M |
Lithuanian | Lt | 4.3K/14.4K | 2 | 21 | 10K | 11.5M |
Portuguese | Pt | 4.4K/17.5K | - | - | - | - |
Bulgarian | Bg | 4.3K/17.6K | - | - | - | - |
Greek | El | 4.4K/17.7K | - | - | - | - |
Latvian | Lv | 4.4K/13.1K | - | - | - | - |
Maltese | Mt | 4.4K/9.1K | - | - | - | - |
Swedish | Sv | 4.5K/16.3K | - | - | - | - |
Danish | Da | 4.3K/13.6K | - | - | - | - |
Total | 100K/384K | 1791 | 4295 | 15M | 467M |
Source/Target | En | De | Fr | Es | Pl | It | Ro | Hu | Cs | Nl | Fi | Sk | Sl | Lt | Da | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
En | - | 463 | 427 | 441 | 432 | 461 | 457 | 382 | 427 | 400 | 442 | 433 | 434 | 398 | 370 | 6.0K |
De | 187 | - | 196 | 204 | 214 | 217 | 198 | 205 | 214 | 196 | 217 | 208 | 218 | 164 | 179 | 2.8K |
Fr | 169 | 187 | - | 187 | 172 | 197 | 195 | 144 | 170 | 158 | 168 | 168 | 156 | 139 | 134 | 2.3K |
Es | 130 | 138 | 135 | - | 118 | 148 | 128 | 93 | 118 | 115 | 124 | 114 | 108 | 83 | 86 | 1.6K |
Pl | 68 | 66 | 54 | 55 | - | 67 | 55 | 43 | 67 | 42 | 55 | 62 | 57 | 50 | 34 | 775 |
It | 69 | 77 | 76 | 79 | 72 | - | 75 | 61 | 68 | 64 | 71 | 66 | 70 | 53 | 60 | 961 |
Ro | 60 | 59 | 59 | 58 | 49 | 61 | - | 38 | 50 | 43 | 48 | 50 | 46 | 38 | 29 | 688 |
Hu | 30 | 38 | 25 | 27 | 29 | 30 | 27 | - | 27 | 20 | 31 | 29 | 26 | 21 | 18 | 378 |
Cs | 39 | 35 | 29 | 30 | 36 | 32 | 31 | 23 | - | 23 | 29 | 55 | 29 | 25 | 18 | 434 |
Nl | 31 | 43 | 35 | 29 | 27 | 38 | 24 | 25 | 25 | - | 32 | 25 | 23 | 19 | 25 | 401 |
Fi | 15 | 18 | 15 | 13 | 13 | 13 | 13 | 12 | 13 | 11 | - | 14 | 12 | 11 | 9 | 182 |
Hr | 31 | 27 | 27 | 24 | 27 | 28 | 24 | 22 | 24 | 22 | 24 | 26 | 37 | 21 | 20 | 384 |
Sk | 21 | 22 | 14 | 16 | 19 | 16 | 16 | 14 | 32 | 13 | 16 | - | 17 | 13 | 10 | 239 |
Sl | 6 | 6 | 4 | 5 | 5 | 6 | 5 | 4 | 5 | 4 | 5 | 6 | - | 4 | 3 | 68 |
Lt | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | 0 | 13 |
Total | 857 | 1.2K | 1.1K | 1.2K | 1.2K | 1.3K | 1.2K | 1.1K | 1.2K | 1.1K | 1.3K | 1.3K | 1.2K | 1.0K | 995 | 17.3K |
Accent | Code | Transcribed Hours | Transcribed Speakers |
---|---|---|---|
Dutch | en_nl | 3.52 | 45 |
German | en_de | 3.52 | 84 |
Czech | en_cs | 3.30 | 26 |
Polish | en_pl | 3.23 | 33 |
French | en_fr | 2.56 | 27 |
Hungarian | en_hu | 2.33 | 23 |
Finnish | en_fi | 2.18 | 20 |
Romanian | en_ro | 1.85 | 27 |
Slovak | en_sk | 1.46 | 17 |
Spanish | en_es | 1.42 | 18 |
Italian | en_it | 1.11 | 15 |
Estonian | en_et | 1.08 | 6 |
Lithuanian | en_lt | 0.65 | 7 |
Croatian | en_hr | 0.42 | 9 |
Slovene | en_sl | 0.25 | 7 |
What's New
- 2022-02-01: New labelled accented English speech data released.
- 2022-01-15: New wav2vec 2.0 pre-trained models released.
- 2021-07-26: New unlabelled data (additional 300K hours) released.
- 2021-03-03: VoxPopuli released.
Getting Data
We provide raw audios as well as scripts to segment and align them with transcription/interpretation. The output format
is Ogg Vorbis (16000Hz, 16-bit, mono-channel),
which is supported by common libraries such as libsndfile
and libsox
(they have Python frontends
by soundfile, torchaudio, etc.).
As the first step, clone this repo for the processing scripts
git clone https://github.com/facebookresearch/voxpopuli.git
and install required PyPI packages:
pip install -r requirements.txt
Unlabelled Data
First, download raw audios via
python -m voxpopuli.download_audios --root [ROOT] --subset [SUBSET]
which saves audios to ${ROOT}/raw_audios/[language]/[year]/[recording_id].ogg
.
SUBSET
specifies the data subset to download:
--subset | # Languages | Hours | Years | Size |
---|---|---|---|---|
en, de, fr, es, pl, it, ro, hu, cs, nl, fi, hr, sk, sl, et, lt, pt, bg, el, lv, mt, sv or da | 1 | 2.7K-4.6K | 2009-2020 | 44G-75G |
en_v2, de_v2, fr_v2, es_v2, pl_v2, it_v2, ro_v2, hu_v2, cs_v2, nl_v2, fi_v2, hr_v2, sk_v2, sl_v2, et_v2, lt_v2, pt_v2, bg_v2, el_v2, lv_v2, mt_v2, sv_v2 or da_v2 | 1 | 8.1K-24.1K | 2009-2020 | 130G-385G |
10k | 23 | 10K | 2019-2020 | 170G |
100k | 23 | 100K | 2009-2020 | 1.7T |
400k | 23 | 400K | 2009-2020 | 6.4T |
Then, segment these audios via
python -m voxpopuli.get_unlabelled_data --root [ROOT] --subset [SUBSET]
which outputs to ${ROOT}/unlabelled_data/[language]/[year]/[segment_id].ogg
Transcribed (ASR) Data
First, download raw audios via
python -m voxpopuli.download_audios --root [ROOT] --subset asr
which saves audios to ${ROOT}/raw_audios/original/[year]/[recording_id].ogg
.
Then, segment these audios and align them with transcripts via
python -m voxpopuli.get_asr_data --root [ROOT] --lang [LANGUAGE]
which outputs
- audios
${ROOT}/transcribed_data/[language]/[year]/[segment_id].ogg
- per-split manifest (ID, transcript, speaker ID)
${ROOT}/transcribed_data/[language]/asr_[split].tsv
Accented transcribed data
To retrieve the transcribed accented speech data, follow the above steps with --lang [LANGUAGE]_accented
(e.g. --lang en_accented
).
Note that the accented speech data is only composed of a test set for now.
Speech-to-Speech Interpretation Data
First, follow the instructions above to set up ASR data (source audios and transcripts).
Then, download target audios via
python -m voxpopuli.download_audios --root [ROOT] --subset [TARGET_LANGUAGE]
which saves audios to ${ROOT}/raw_audios/[target_language]/[year]/[recording_id].ogg
.
Finally, segment these audios and match them with source ones via
python -m voxpopuli.get_s2s_data --root [ROOT] --source-lang [SOURCE_LANGUAGE] --target-lang [TARGET_LANGUAGE]
which outputs
- target audios
${ROOT}/transcribed_data/[language]/[target_language]/[year]/[segment_id].ogg
- manifest (source ID, transcript, speaker ID, target ID)
${ROOT}/transcribed_data/[language]/[target_language]/s2s.tsv
We also human-transcribe part of the target audios (for English, French and Spanish only) to allow more accurate alignments.
To use them instead of machine transcriptions in the alignments, add --use-annotated-target
to the command line.
Language Modeling (LM) Data
We combine VoxPopuli transcripts and text data from Europarl for LM training.
Download VoxPopuli and Europarl text data, process the raw text and generate the vocabulary via
python -m voxpopuli.get_lm_data --root [ROOT] --lang [LANGUAGE]
which outputs
- sentences
${ROOT}/lm_data/[language]/sentences.txt
- vocabulary
${ROOT}/lm_data/[language]/vocabulary.txt
To train an n-gram LM with KenLM, run
${KENLM_PATH}/lmplz -o ${n} --limit_vocab_file [OUT_VOCAB_FILE] < [OUT_TEXT_FILE] > ${n}gram_lm.arpa
${KENLM_PATH}/build_binary ${n}gram_lm.arpa ${n}gram_lm.bin
Pre-trained Models
wav2vec 2.0
We provide pre-trained wav2vec 2.0 models (implemented in fairseq and wav2letter/flashlight) for downstream speech tasks. Each language is covered by a monolingual Base model and multilingual Large models that combine languages in the same family or all languages. See also XLS-R for larger-scale (up to 2B) multilingual models trained on VoxPopuli (400K hours).
<details><summary><b>Download</b></summary><p>Language(s) | Family | PT Hours | Base Model (95M) | Large Model (317M) |
---|---|---|---|---|
Es (V1/V2) | Romance | 4.4K/21.4K | fairseq V1 / V2 | fairseq V1 / V2 Romance |
Fr (V1/V2) | Romance | 4.5K/22.8K | fairseq V1 / V2 | fairseq V1 / V2 Romance |
It (V1/V2) | Romance | 4.6K/21.9K | fairseq V1 / V2 | fairseq V1 / V2 Romance |
Pt (V2) | Romance | 17.5K | fairseq | fairseq V2 Romance |
Ro (V2) | Romance | 17.9K | fairseq | fairseq V2 Romance |
Nl (V1/V2) | West Germanic | 4.5K/19.0K | fairseq V1 / V2 | fairseq V1 / V2 West Germanic |
En (V2) | West Germanic | 24.1K | fairseq | fairseq V2 West Germanic |
De (V2) | West Germanic | 23.2K | fairseq | fairseq V2 West Germanic |
Sv (V1/V2) | North Germanic | 4.5K/16.3K | fairseq V1 / V2 | fairseq V1 / V2 North Germanic |
Da (V2) | North Germanic | 13.6K | fairseq | fairseq V2 North Germanic |
Bg (V2) | Slavic | 17.6K | fairseq | fairseq V2 Slavic |
Cs (V2) | Slavic | 18.7K | fairseq | fairseq V2 Slavic |
Hr (V2) | Slavic | 8.1K | fairseq | fairseq V2 Slavic |
Pl (V2) | Slavic | 21.2K | fairseq | fairseq V2 Slavic |
Sk (V2) | Slavic | 12.1K | fairseq | fairseq V2 Slavic |
Sl (V2) | Slavic | 11.3K | fairseq | fairseq V2 Slavic |
Et (V2) | Uralic | 10.6K | fairseq | fairseq V2 Uralic |
Fi (V2) | Uralic | 14.2K | fairseq | fairseq V2 Uralic |
Hu (V2) | Uralic | 17.7K | fairseq | fairseq V2 Uralic |
Lv (V2) | Baltic | 13.1K | fairseq | fairseq V2 Baltic |
Lt (V2) | Baltic | 14.4K | fairseq | fairseq V2 Baltic |
El (V2) | Greek | 17.7K | fairseq | fairseq |
Mt (V2) | Semitic | 9.1K | fairseq | fairseq |
All 23 languages | - | 10K | fairseq | fairseq |
All 23 languages | - | 100K | fairseq / wav2letter | fairseq |
In our paper (Section 4.3.1), we evaluated part of these models on the Common Voice corpus in the normal setting and the few-shot phoneme recognition setting.
Wav2letter C++ implementation
A wav2letter implementation as well as a checkpoint pretrained on VoxPopuli 100k (base model) is also available in the Wav2letter respository.
The complete fine-tuned ASR baselines for this codebase shoulda come soon. The wav2letter implementation follows this paper.
ASR and LM
For the VoxPopuli ASR task, we provide Transformer baselines, fine-tuned wav2vec2 models (Base 10K) as well as n-gram LMs (trained with KenLM) and their lexicons.
<details><summary><b>Download</b></summary><p>We also provide CoVoST 2 + EuroParl-ST ASR Transformer models that are self-trained on 3000h VoxPopuli unlabelled data.
<details><summary><b>Download</b></summary><p>Language | CoVoST 2 Test (WER) | EuroParl-ST Test (WER) | Model (fairseq) |
---|---|---|---|
De | 17.3 | 21.4 | s2t_transformer_l |
Es | 13.2 | 15.3 | s2t_transformer_l |
Fr | 17.0 | 19.0 | s2t_transformer_l |
Please refer to the S2T examples for the use of Transformer model checkpoints.
Speech-to-Text Translation (ST)
We provide CoVoST 2 + EuroParl-ST ST Transformer models that are jointly trained with 400h VoxPopuli weakly labelled data.
<details><summary><b>Download</b></summary><p>Direction | CoVoST 2 Test (BLEU) | EuroParl-ST Test (BLEU) | Model (fairseq) |
---|---|---|---|
De-En | 23.4 | 24.4 | s2t_transformer_l |
Es-En | 29.7 | 28.4 | s2t_transformer_l |
Fr-En | 30.3 | 31.1 | s2t_transformer_l |
Please refer to the S2T examples for the use of these checkpoints.
License
License | |
---|---|
VoxPopuli Data | CC0 (see also European Parliament's legal notice for the raw data) |
LM Data | (Please check out the Europarl website for the Europarl portion) |
Pre-trained Models | CC BY-NC 4.0 |
Code | CC BY-NC 4.0 |
Contact
Changhan Wang (changhan@fb.com), Morgane Rivière (mriviere@fb.com), Ann Lee (annl@fb.com)
Citation
@inproceedings{wang-etal-2021-voxpopuli,
title = "{V}ox{P}opuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation",
author = "Wang, Changhan and
Riviere, Morgane and
Lee, Ann and
Wu, Anne and
Talnikar, Chaitanya and
Haziza, Daniel and
Williamson, Mary and
Pino, Juan and
Dupoux, Emmanuel",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.80",
pages = "993--1003",
}