Awesome
fulltext-engine
Query your levelup/leveldb engine using full text search phrases with INDEXES.
This is a plugin for level-queryengine.
Installation
Install through npm:
$ npm install fulltext-engine
Usage
var levelQuery = require('level-queryengine'),
fulltextEngine = require('fulltext-engine'),
levelup = require('levelup'),
db = levelQuery(levelup('my-db'));
db.query.use(fulltextEngine());
// index the properties you want (the 'doc' property on objects in this case):
db.ensureIndex('doc', 'fulltext', fulltextEngine.index());
db.batch(makeSomeData(), function (err) {
// will find all objects where 'my' and 'query' are present
db.query('doc', 'my query')
.on('data', console.log)
.on('stats', function (stats) {
// stats contains the query statistics in the format
// { indexHits: 1, dataHits: 1, matchHits: 1 });
});
// will find all objects where 'my' OR 'query' are present
db.query('doc', 'my query', 'or')
.on('data', console.log)
.on('stats', function (stats) {
// stats contains the query statistics in the format
// { indexHits: 1, dataHits: 1, matchHits: 1 });
});
});
Indexing Strategy Support
Currently only one index strategy is supported:
'fulltext'
(default) - full text index the property defined by theindexName
.
Note: if you want to index another property with a different name than the
indexName
then pass the property path through to the constructor of the
fulltextEngine.index()
function.
db.query.use(fulltextEngine());
// index 'stringfield' property of objects
db.ensureIndex('stringfield', 'fulltext', fulltextEngine.index());
// index the 'anotherName' property of objects but store it in the 'oneName' index
db.ensureIndex('oneName', 'fulltext', fulltextEngine.index('anotherName'));
When indexes aren't present
If a full text index is not present for a query, then it will result in a full leveldb "table" scan. You will get the same results as an index query, it will just take longer.
The result stream that gets returned from db#query
also emits 'stats'
events
so you can tell if an index did or didn't get used.
db.query('doc', 'my query', 'or')
.on('data', console.log)
.on('stats', function (stats) {
// stats looks like this if an index got used
// { indexHits: 1, dataHits: 1, matchHits: 1 });
// stats looks like this if an index did not get used
// { indexHits: 0, dataHits: 100, matchHits: 1 });
});
API
fulltextEngine([fuzzy])
Returns a full text engine query engine for use with level-queryEngine
.
Note: you can pass an optional boolean parameter to the contructor of the fulltextEngine factory function if you want to use a "fuzzy" search similar sounding words will match; (eg. "for" and "fear" would match under the fuzzy match).
fulltextEngine.index([propertyToIndex])
Returns a full text engine indexing strategy to use with db.ensureIndex
.
If not provided, the ensureIndex
will index the object path defined by the index name.
db.query(pathName, searchText, [andOr])
Will seach the object path pathName
for the presence of searchText
. The
default search is an AND (ie. all search terms must be present). You can also
pass in 'or'
if you want to match any documents that have ANY of the search
terms present.
TODO
This project is under active development. Here's a list of things I'm planning to add:
- indexing the frequency of words as well and use it to rank better matching documents higher.
- proper Information Retrieval ranking algorithms