Home

Awesome

Imbalanced Learning for Recognition

This repository contains the code of our papers on the topic of imbalanced learning for recognition.

Generalized Parametric-Contrastive-Learning

This repository contains the implementation code for ICCV2021 paper Parametric Contrastive Learning (https://arxiv.org/abs/2107.12028) and TPAMI 2023 paper Generalized Parametric Contrastive Learning (https://arxiv.org/abs/2209.12400).

PWC PWC PWC PWC

Full ImageNet Classification and Out-of-Distribution Robustness

MethodModelFull ImageNetImageNet-C (mCE)ImageNet-C (rel. mCE)ImageNet-RImageNet-Slinklog
GPaCoResNet-5079.750.964.441.130.9downloaddownload
CEViT-B83.639.149.949.936.1---download
CEViT-L85.732.441.460.345.5---download
multi-taskViT-B83.4---------------download
GPaCoViT-B84.037.247.351.739.4downloaddownload
GPaCoViT-L86.030.739.060.348.3downloaddownload

CIFAR Classification

MethodModelTop-1 Acc(%)linklog
multi-taskResNet-5079.1---download
GPaCoResNet-5080.3---download

Long-tailed Recognition

ImageNet-LT

MethodModelTop-1 Acc(%)linklog
GPaCoResNet-5058.5downloaddownload
GPaCoResNeXt-5058.9downloaddownload
GPaCoResNeXt-10160.8downloaddownload
GPaCoensemble( 2-ResNeXt-101)63.2------

iNaturalist 2018

MethodModelTop-1 Acc(%)linklog
GPaCoResNet-5075.4downloaddownload
GPaCoResNet-15278.1---download
GPaCoensembel(2-ResNet-152)79.8------

Places-LT

MethodModelTop-1 Acc(%)linklog
GPaCoResNet-15241.7downloaddownload

Semantic Segmentation

MethodDatasetModelmIoU (s.s.)mIoU (m.s.)linklog
GPaCoADE20KSwin-T45.446.8---download
GPaCoADE20KSwin-B51.653.2---download
GPaCoADE20KSwin-L52.854.3---download
GPaCoCOCO-StuffResNet-5037.037.9---download
GPaCoCOCO-StuffResNet-10138.840.1---download
GPaCoPascal Context 59ResNet-5051.953.7---download
GPaCoPascal Context 59ResNet-10154.256.3---download
GPaCoCityscapesResNet-1878.179.7---download
GPaCoCityscapesResNet-5080.882.0---download
GPaCoCityscapesResNet-10181.482.1---download

Get Started

Environments

We use python3.8, pytorch 1.8.1, mmcv 1.3.13 and timm==0.3.2. Our code is based on PaCo, MAE, and mmseg.

Train and Evaluation Scripts

On full ImageNet and OOD robustness,

We use 8 Nvidia GForce RTx 3090 GPUs. MAE pretrained models should be downloaded from here.

cd GPaCo/LT
bash sh/ImageNet/train_resnet50.sh
bash sh/ImageNet/eval_resnet50.sh

cd GPaCo/MAE-ViTs
bash sh/finetune_base_mae.sh
bash sh/finetune_base_mae_multitask.sh
bash sh/finetune_base_mae_gpaco.sh
bash sh/finetune_base_mae_gpaco_eval.sh

On imbalanced data,

cd GPaCo/LT
bash sh/LT/ImageNetLT_train_X50_multitask.sh
bash sh/LT/ImageNetLT_train_X50.sh
sh/LT/ImageNetLT_eval_X50.sh

bash sh/LT/Inat_train_R50.sh
sh/LT/Inat_eval_R50.sh

bash sh/LT/PlacesLT_train_R152.sh
bash sh/LT/PlacesLT_eval_R152.sh

On semantic segmentation,

cd GPaCo/Seg/semseg
bash sh/ablation_paco_ade20k/upernet_swinbase_160k_ade20k_paco.sh
bash sh/ablation_paco_coco10k/r50_deeplabv3plus_40k_coco10k_paco.sh
bash sh/ablation_paco_context/r50_deeplabv3plus_40k_context_paco.sh
bash sh/ablation_paco_cityscapes/r50_deeplabv3plus_40k_context.sh

Parametric-Contrastive-Learning

This repository contains the implementation code for ICCV2021 paper:
Parametric Contrastive Learning (https://arxiv.org/abs/2107.12028)

Overview

In this paper, we propose Parametric Contrastive Learning (PaCo) to tackle long-tailed recognition. Based on theoretical analysis, we observe supervised contrastive loss tends to bias on high-frequency classes and thus increases the difficulty of imbalance learning. We introduce a set of parametric class-wise learnable centers to rebalance from an optimization perspective. Further, we analyze our PaCo loss under a balanced setting. Our analysis demonstrates that PaCo can adaptively enhance the intensity of pushing samples of the same class close as more samples are pulled together with their corresponding centers and benefit hard example learning. Experiments on long-tailed CIFAR, ImageNet, Places, and iNaturalist 2018 manifest the new state-of-the-art for long-tailed recognition. On full ImageNet, models trained with PaCo loss surpass supervised contrastive learning across various ResNet backbones.

Results and Pretrained models

Full ImageNet (Balanced setting)

MethodModelTop-1 Acc(%)linklog
PaCoResNet-5079.3downloaddownload
PaCoResNet-10180.9downloaddownload
PaCoResNet-20081.8downloaddownload

ImageNet-LT (Imbalance setting)

MethodModelTop-1 Acc(%)linklog
PaCoResNet-5057.0downloaddownload
PaCoResNeXt-5058.2downloaddownload
PaCoResNeXt-10160.0downloaddownload

iNaturalist 2018 (Imbalanced setting)

MethodModelTop-1 Acc(%)linklog
PaCoResNet-5073.2TBDdownload
PaCoResNet-15275.2TBDdownload

Places-LT (Imbalanced setting)

MethodModelTop-1 Acc(%)linklog
PaCoResNet-15241.2TBDdownload

Get Started

For full ImageNet, ImageNet-LT, iNaturalist 2018, Places-LT training and evaluation. Note that PyTorch>=1.6. All experiments are conducted on 4 GPUs. If you have more GPU resources, please make sure that the learning rate should be linearly scaled and 32 images per gpu is recommented.

cd Full-ImageNet
bash sh/train_resnet50.sh
bash sh/eval_resnet50.sh

cd LT
bash sh/ImageNetLT_train_R50.sh
bash sh/ImageNetLT_eval_R50.sh
bash sh/PlacesLT_train_R152.sh
bash sh/PlacesLT_eval_R152.sh

cd LT
bash sh/CIFAR100_train_imb0.1.sh

Contact

If you have any questions, feel free to contact us through email (jiequancui@link.cuhk.edu.hk) or Github issues. Enjoy!

BibTex

If you find this code or idea useful, please consider citing our work:

@ARTICLE{10130611,
  author={Cui, Jiequan and Zhong, Zhisheng and Tian, Zhuotao and Liu, Shu and Yu, Bei and Jia, Jiaya},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={Generalized Parametric Contrastive Learning}, 
  year={2023},
  volume={},
  number={},
  pages={1-12},
  doi={10.1109/TPAMI.2023.3278694}}


@inproceedings{cui2021parametric,
  title={Parametric contrastive learning},
  author={Cui, Jiequan and Zhong, Zhisheng and Liu, Shu and Yu, Bei and Jia, Jiaya},
  booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
  pages={715--724},
  year={2021}
}

@ARTICLE{9774921,
  author={Cui, Jiequan and Liu, Shu and Tian, Zhuotao and Zhong, Zhisheng and Jia, Jiaya},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={ResLT: Residual Learning for Long-Tailed Recognition}, 
  year={2023},
  volume={45},
  number={3},
  pages={3695-3706},
  doi={10.1109/TPAMI.2022.3174892}
  }

  
@article{cui2022region,
  title={Region Rebalance for Long-Tailed Semantic Segmentation},
  author={Cui, Jiequan and Yuan, Yuhui and Zhong, Zhisheng and Tian, Zhuotao and Hu, Han and Lin, Stephen and Jia, Jiaya},
  journal={arXiv preprint arXiv:2204.01969},
  year={2022}
  }
  
@article{zhong2023understanding,
  title={Understanding Imbalanced Semantic Segmentation Through Neural Collapse},
  author={Zhong, Zhisheng and Cui, Jiequan and Yang, Yibo and Wu, Xiaoyang and Qi, Xiaojuan and Zhang, Xiangyu and Jia, Jiaya},
  journal={arXiv preprint arXiv:2301.01100},
  year={2023}
}