Home

Awesome

offical pytorch implement of seesawfacenet


1. Intro


2. Pretrained Models & training logs & Performance

seesawfacenet @ googledrive seesawfacenet @ baidudisk extraction code:exiy Image text Image text

3. How to use

3.1 Data Preparation

3.1.1 Prepare Facebank (For testing over camera or video)

Provide the face images your want to detect in the data/face_bank folder, and guarantee it have a structure like following:

data/facebank/
        ---> id1/
            ---> id1_1.jpg
        ---> id2/
            ---> id2_1.jpg
        ---> id3/
            ---> id3_1.jpg
           ---> id3_2.jpg

3.1.2 download the pretrained model to work_space/model

If more than 1 image appears in one folder, an average embedding will be calculated

3.2.3 Prepare Dataset (MS1MV2(face_emore, refined MS1M...whatever we call it) For training refer to the original paper)

download the MS1MV2 dataset:

Note: If you use MS1MV2 dataset and the cropped VGG2 dataset, please cite the original papers.

faces_emore/
            ---> agedb_30
            ---> calfw
            ---> cfp_ff
            --->  cfp_fp
            ---> cfp_fp
            ---> cplfw
            --->imgs
            ---> lfw
            ---> vgg2_fp

3.2 detect over camera:

- facebank/
         name1/
             photo1.jpg
             photo2.jpg
             ...
         name2/
             photo1.jpg
             photo2.jpg
             ...
         .....
    if more than 1 image appears in the directory, average embedding will be calculated

3.3 detect over video:

​```
python infer_on_video.py -f [video file name] -s [save file name]
​```

the video file should be inside the data/face_bank folder

previous work on mtcnn for android platform and face cropping

3.4 Training:

​```
python train.py -b [batch_size] -lr [learning rate] -e [epochs]

# python train.py -net mobilefacenet -b 256 -w 24
​```

4. References

PS

Citation

Please cite our papers in your publications if it helps your research:

@misc{zhang2019seesawnet, title={Seesaw-Net: Convolution Neural Network With Uneven Group Convolution}, author={Jintao Zhang}, year={2019}, eprint={1905.03672}, archivePrefix={arXiv}, primaryClass={cs.CV} }

@misc{zhang2019seesawfacenets, title={SeesawFaceNets: sparse and robust face verification model for mobile platform}, author={Jintao Zhang}, year={2019}, eprint={1908.09124}, archivePrefix={arXiv}, primaryClass={cs.CV} }