Home

Awesome

DB-GPT: AI Native Data App Development framework with AWEL(Agentic Workflow Expression Language) and Agents

<p align="left"> <img src="./assets/LOGO.png" width="100%" /> </p> <div align="center"> <p> <a href="https://github.com/eosphoros-ai/DB-GPT"> <img alt="stars" src="https://img.shields.io/github/stars/eosphoros-ai/db-gpt?style=social" /> </a> <a href="https://github.com/eosphoros-ai/DB-GPT"> <img alt="forks" src="https://img.shields.io/github/forks/eosphoros-ai/db-gpt?style=social" /> </a> <a href="https://opensource.org/licenses/MIT"> <img alt="License: MIT" src="https://img.shields.io/badge/License-MIT-yellow.svg" /> </a> <a href="https://github.com/eosphoros-ai/DB-GPT/releases"> <img alt="Release Notes" src="https://img.shields.io/github/release/eosphoros-ai/DB-GPT" /> </a> <a href="https://github.com/eosphoros-ai/DB-GPT/issues"> <img alt="Open Issues" src="https://img.shields.io/github/issues-raw/eosphoros-ai/DB-GPT" /> </a> <a href="https://discord.gg/7uQnPuveTY"> <img alt="Discord" src="https://dcbadge.vercel.app/api/server/7uQnPuveTY?compact=true&style=flat" /> </a> <a href="https://join.slack.com/t/slack-inu2564/shared_invite/zt-29rcnyw2b-N~ubOD9kFc7b7MDOAM1otA"> <img alt="Slack" src="https://badgen.net/badge/Slack/Join%20DB-GPT/0abd59?icon=slack" /> </a> <a href="https://codespaces.new/eosphoros-ai/DB-GPT"> <img alt="Open in GitHub Codespaces" src="https://github.com/codespaces/badge.svg" /> </a> </p>

简体中文 | 日本語 | Discord | Documents | 微信 | Community | Paper

</div>

What is DB-GPT?

🤖 DB-GPT is an open source AI native data app development framework with AWEL(Agentic Workflow Expression Language) and agents.

The purpose is to build infrastructure in the field of large models, through the development of multiple technical capabilities such as multi-model management (SMMF), Text2SQL effect optimization, RAG framework and optimization, Multi-Agents framework collaboration, AWEL (agent workflow orchestration), etc. Which makes large model applications with data simpler and more convenient.

🚀 In the Data 3.0 era, based on models and databases, enterprises and developers can build their own bespoke applications with less code.

AI-Native Data App



app_chat_v0 6

app_manage_chat_data_v0 6

chat_dashboard_display_v0 6

agent_prompt_awel_v0 6

Contents

Introduction

The architecture of DB-GPT is shown in the following figure:

<p align="center"> <img src="./assets/dbgpt.png" width="800" /> </p>

The core capabilities include the following parts:

SubModule

Text2SQL Finetune

More Information about Text2SQL finetune

Install

Docker Linux macOS Windows

Usage Tutorial

Features

At present, we have introduced several key features to showcase our current capabilities:

Image

🌐 AutoDL Image

Language Switching

In the .env configuration file, modify the LANGUAGE parameter to switch to different languages. The default is English (Chinese: zh, English: en, other languages to be added later).

Contribution

Contributors Wall

<a href="https://github.com/eosphoros-ai/DB-GPT/graphs/contributors"> <img src="https://contrib.rocks/image?repo=eosphoros-ai/DB-GPT&max=200" /> </a>

Licence

The MIT License (MIT)

Citation

If you want to understand the overall architecture of DB-GPT, please cite <a href="https://arxiv.org/abs/2312.17449" target="_blank">paper</a> and <a href="https:// arxiv.org/abs/2404.10209" target="_blank">Paper</a>

If you want to learn about using DB-GPT for Agent development, please cite the <a href="https://arxiv.org/abs/2412.13520" target="_blank">paper</a>

@article{xue2023dbgpt,
      title={DB-GPT: Empowering Database Interactions with Private Large Language Models}, 
      author={Siqiao Xue and Caigao Jiang and Wenhui Shi and Fangyin Cheng and Keting Chen and Hongjun Yang and Zhiping Zhang and Jianshan He and Hongyang Zhang and Ganglin Wei and Wang Zhao and Fan Zhou and Danrui Qi and Hong Yi and Shaodong Liu and Faqiang Chen},
      year={2023},
      journal={arXiv preprint arXiv:2312.17449},
      url={https://arxiv.org/abs/2312.17449}
}
@misc{huang2024romasrolebasedmultiagentdatabase,
      title={ROMAS: A Role-Based Multi-Agent System for Database monitoring and Planning}, 
      author={Yi Huang and Fangyin Cheng and Fan Zhou and Jiahui Li and Jian Gong and Hongjun Yang and Zhidong Fan and Caigao Jiang and Siqiao Xue and Faqiang Chen},
      year={2024},
      eprint={2412.13520},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2412.13520}, 
}
@inproceedings{xue2024demonstration,
      title={Demonstration of DB-GPT: Next Generation Data Interaction System Empowered by Large Language Models}, 
      author={Siqiao Xue and Danrui Qi and Caigao Jiang and Wenhui Shi and Fangyin Cheng and Keting Chen and Hongjun Yang and Zhiping Zhang and Jianshan He and Hongyang Zhang and Ganglin Wei and Wang Zhao and Fan Zhou and Hong Yi and Shaodong Liu and Hongjun Yang and Faqiang Chen},
      year={2024},
      booktitle = "Proceedings of the VLDB Endowment",
      url={https://arxiv.org/abs/2404.10209}
}

Contact Information

We are working on building a community, if you have any ideas for building the community, feel free to contact us.

Star History Chart