Awesome
Catalyst.Neuro
This repository provides a 3D Brain Segmentation Pipeline for a structural magnetic resonance imaging (MRI) scan using the Catalyst framework using the Mindboggle Dataset as an example. It also provides pre-trained models for Gray Matter White Matter (GMWM) segmentation, 104 class brain atlas segmentation, and 31 class brain atlas segmentation and with usage shown in example notebooks. Segmenting a structural MRI is an important processing step that enables subsequent inferences about tissue changes in development, aging, and disease. This work is based on the following papers: An (almost) instant brain atlas segmentation for large-scale studies and End-to-end learning of brain tissue segmentation from imperfect labeling.
Developed in a partnership with
<div align="center">Brain image analysis
</div>Pretrained Model Statistics
Model | Classes | # of Brains (Training) | # of Brains (Validation) | # of Brains Test | Macro DICE |
---|---|---|---|---|---|
MeshNet GMWM | 3 | 20 | 4 | 4 | .9565 |
MeshNet Dropout GMWM | 3 | 20 | 4 | 4 | .8748 |
MeshNet Large GMWM | 3 | 20 | 4 | 4 | .9652 |
MeshNet Large GMWM | 3 | 20 | 4 | 4 | .9624 |
UNet GMWM | 3 | 20 | 4 | 4 | .9624 |
MeshNet Large Mindboggle | 31 | 70 | 10 | 20 | .6742 |
UNet Mindboggle | 31 | 70 | 10 | 20 | .6771 |
MeshNet Large HCP Atlas | 104 | 770 | 27 | 100 | ~.85 |
Model | Inference Speed | Model Size |
---|---|---|
MeshNet GMWM | 116 subvolumes/sec | .89 mb |
MeshNet Dropout GMWM | 115 subvolumes/sec | .89 mb |
MeshNet Large GMWM | 19 subvolumes/sec | 9mb |
MeshNet Large Dropout GMWM | 19 subvolumes/sec | 9mb |
UNet GMWM | 13 subvolumes/sec | 288 mb |
MeshNet Large Mindboggle | 19 subvolumes/sec | 9 mb |
UNet Mindboggle | 13 subvolumes/sec | 288 mb |
MeshNet Large HCP Atlas | 18 subvolumes/sec | 10 mb |
Download links are in the Example Segmentation Notebooks
Example Segmentation Notebooks
- Gray White Matter Prediction and Visualization
- Mindboggle Prediction and Visualization
- Neuro UNet/Meshnet training tutorial
Training MeshNet on Mindboggle
You can reproduce MeshNet for Mindboggle with 5 simple steps
- Install requirements
conda env create -f neuro_conda.yml conda activate neuro pip install -r ./requirements/requirements.txt
- Download data. You need to have an account on the open science framework.
mkdir Mindboggle_data osf -p 9ahyp clone Mindboggle_data cp -r Mindboggle_data/osfstorage/Mindboggle101_volumes/ data/Mindboggle_data/ If you don't want to make an OSF account the files can also be downloaded the correct folder using these commands: download-gdrive 1l3YCRW7ezV9pw0e3aeYDFi4VsAm_DO7l data/Mindboggle_data/ download-gdrive 1fxvqrs98F1Gnozg-HsxCjfTrw5zJbQxm data/Mindboggle_data/ download-gdrive 1w0VXG7mLkE9tULPIxhnNK0qyguuQ7Zx8 data/Mindboggle_data/ download-gdrive 1soDBWB0iXb3Dc1XarSKgfgwiKDInSLQw data/Mindboggle_data/ download-gdrive 1jmwE69imokKJJaPKdCNK0Qlxb_r1bGN4 data/Mindboggle_data/
- Unzip data and remove archive files
find data/Mindboggle_101 -name '*.tar.gz'| xargs -i tar zxvf {} -C data/Mindboggle_101 find data/Mindboggle_101 -name '*.tar.gz'| xargs -i rm {}
- Prepare data (31 is the number of classes in the example. 102 is the full
number of classes in Mindboggle)
python neuro/scripts/prepare_data.py ./data/Mindboggle_101 31
- Start training
python neuro/minimal_example.py
MRI Segmentation Datasets
Mindboggle dataset uses manual annotations which are considered the gold standard. Manually labeling a single MRI can take a week of expert labeling. The labeling is done using a 2D display, one slice at a time which can lead to accuracy/ consistency issues. For our pre-trained models, we use automated labels from the Human Connectome Project (HCP), which can be downloaded here. The automated labeling tool used (FreeSurfer) employs probabilistic methods with priors to perform segmentation and is the current SOTA. While running FreeSurfer involves more than segmentation, it can take hours to segment a single MRI from FreeSurfer vs. minutes for a MeshNet model.
HCP Data preparation
- Prepare T1 or T2 input with mri_convert from FreeSurfer to conform T1 to 1mm voxel size in coronal slice direction with side length 256. You can skip this step if your T1 image is already with slice thickness 1mm x 1mm x 1mm and 256 x 256 x 256.
mri_convert *brainDir*/t1.nii *brainDir*/T1.nii.gz -c
- Prepare 104 atlas labels from aparc+aseg.nii.gz for HCP atlas segmentation using:
python neuro/scripts/prepare_atlas_data.py --brains_list *brains_list.txt*
- Or Prepare GMWM labels from aparc+aseg.mgz using:
./bin/mk_gwmwm_labels.sh [input_directory] [output_directory]
<div align="center">
Accelerated Deep Learning R&D
</div>