Awesome
LLaVolta: Efficient Multi-modal Models via Stage-wise Visual Context Compression
The folder includes the implementation of LLaVolta for Efficient Large Language and Vision Assistant.
<p> <img src="staging.png" alt="teaser" width=90% height=90%> </p>Instantiation of LLaVolta schemes:
<img width="841" alt="image" src="https://github.com/Beckschen/LLaVolta/assets/30471421/62831a80-1e7c-4a07-b5e2-38296c3b88cd">Accelerate and Boost LLaVA:
<img width="876" alt="image" src="https://github.com/Beckschen/LLaVolta/assets/30471421/35b903ac-15ba-48be-8b9c-7823af0a1dc7">Accelerate and Boost VideoLLaVA:
<img width="840" alt="image" src="https://github.com/Beckschen/LLaVolta/assets/30471421/e010cd53-16d9-44bf-a281-58cedca0600c">Install
Note: code is developed based on Ubuntu 20.04/22.04. CUDA=12.1 Our code is developed based on LLaVA, the installation is very similar to original repo of LLaVA:
- Clone this repository and navigate to LLaVA folder
git clone https://github.com/Beckschen/LLaVolta
cd LLaVolta
- Install Package
conda create -n llavolta python=3.10 -y
conda activate llavolta
pip install --upgrade pip
pip install -e .
- Install additional packages for training cases
pip install -e ".[train]"
pip install flash-attn --no-build-isolation --no-cache-dir
cd llava/eval
tar xvf table.tar
cd ../..
Efficient Training
- Download the training data for both pretraining and fine-tuning from the original LLaVA repository.
- Set the necessary path variables:
ROOT_DATA
,ROOT_WEIGHT
, andROOT_LOG
(optional). - Begin training using the scripts. We provide four examples: 4stage, heavy_compression, light_compression, and reproduce.
NAME=4stage # Option: {heavy-compression, light-compression, reproduce}
bash scripts/v1_5/train-$NAME.sh
Evaluation
Running scripts under scripts/v1_5/eval/$NAME, where NAME is the name of checkpoint's name. We provide four example: 4stage, heavy_compression, light_compression, reproduce.
For all scripts we provided, please first fill up necessary path variables: ROOT_DATA, ROOT_WEIGHT, ROOT_LOG(optional)
VQAv2
- Download
test2015
and put it under$ROOT_DATA/eval/vqav2
. - Multi-GPU inference.
NAME=4stage # Option: {heavy-compression, light-compression, reproduce}
bash scripts/v1_5/eval/$NAME/vqav2.sh
- Submit the results to the evaluation server.
GQA
- Download the data and evaluation scripts following the official instructions and put under
$ROOT_DATA/eval/gqa/data
. You may need to modifyeval.py
as this due to the missing assets in the GQA v1.2 release. - Multi-GPU inference.
NAME=4stage # Option: {heavy-compression, light-compression, reproduce}
bash scripts/v1_5/eval/$NAME/gqa.sh
VisWiz
- Download
test.json
and extracttest.zip
totest
. Put them under$ROOT_DATA/eval/vizwiz
. - Single-GPU inference.
NAME=4stage # Option: {heavy-compression, light-compression, reproduce}
bash scripts/v1_5/eval/$NAME/vizwiz.sh
- Submit the results to the evaluation server:
$ROOT_DATA/eval/vizwiz/answers_upload
.
ScienceQA
- Under
$ROOT_DATA/eval/scienceqa
, downloadimages
,pid_splits.json
,problems.json
from thedata/scienceqa
folder of the ScienceQA repo. - Single-GPU inference and evaluate.
NAME=4stage # Option: {heavy-compression, light-compression, reproduce}
bash scripts/v1_5/eval/$NAME/sqa.sh
TextVQA
- Download
TextVQA_0.5.1_val.json
and images and extract to$ROOT_DATA/eval/textvqa
. - Single-GPU inference and evaluate.
NAME=4stage # Option: {heavy-compression, light-compression, reproduce}
bash scripts/v1_5/eval/$NAME/textvqa.sh
POPE
- Download
coco
from POPE and put under$ROOT_DATA/eval/pope
. - Single-GPU inference and evaluate.
NAME=4stage # Option: {heavy-compression, light-compression, reproduce}
bash scripts/v1_5/eval/$NAME/pope.sh
MME
- Download the data following the official instructions here.
- Downloaded images to
MME_Benchmark_release_version
. - put the official
eval_tool
andMME_Benchmark_release_version
under$ROOT_DATA/eval/MME
. - Single-GPU inference and evaluate.
NAME=4stage # Option: {heavy-compression, light-compression, reproduce}
bash scripts/v1_5/eval/$NAME/mme.sh
MMBench
- Download
mmbench_dev_20230712.tsv
and put under$ROOT_DATA/eval/mmbench
. - Single-GPU inference.
NAME=4stage # Option: {heavy-compression, light-compression, reproduce}
bash scripts/v1_5/eval/$NAME/mmbench.sh
- Submit the results to the evaluation server:
$ROOT_DATA/eval/mmbench/answers_upload/mmbench_dev_20230712
.
MMBench-CN
- Download
mmbench_dev_cn_20231003.tsv
and put under$ROOT_DATA/eval/mmbench
. - Single-GPU inference.
NAME=4stage # Option: {heavy-compression, light-compression, reproduce}
bash scripts/v1_5/eval/$NAME/mmbench_cn.sh
- Submit the results to the evaluation server:
$ROOT_DATA/eval/mmbench/answers_upload/mmbench_dev_cn_20231003
.
SEED-Bench
- Following the official instructions to download the images and the videos. Put images under
$DATA_ROOT/eval/seed_bench/SEED-Bench-image
. Note that we only use image subset to evaluate LLaVolta - Multiple-GPU inference and evaluate.
NAME=4stage # Option: {heavy-compression, light-compression, reproduce}
bash scripts/v1_5/eval/$NAME/seed.sh
LLaVA-Bench-in-the-Wild
- Extract contents of
llava-bench-in-the-wild
to$ROOT_DATA/eval/llava-bench-in-the-wild
. - Single-GPU inference and evaluate.
NAME=4stage # Option: {heavy-compression, light-compression, reproduce}
bash scripts/v1_5/eval/$NAME/llavabench.sh
MM-Vet
- Extract
mm-vet.zip
to$ROOT_DATA/eval/mmvet
. - Single-GPU inference.
NAME=4stage # Option: {heavy-compression, light-compression, reproduce}
bash scripts/v1_5/eval/$NAME/mmvet.sh
-
Evaluate the predictions in
$ROOT_DATA/eval/mmvet/results
using the official jupyter notebook.
Citing LLaVolta
@inproceedings{chen2024vitamin,
title={LLaVolta: Efficient Multi-modal Models via Stage-wise Visual Context Compression},
author={Chen, Jieneng and Ye, Luoxin and He, Ju and Wang, Zhao-Yang and Khashabi, Daniel and Yuille, Alan},
journal={arXiv preprint arXiv:2406.xxx},
year={2024}
}
Original Repo of LLaVA
<!-- <a href="https://llava.hliu.cc/"><img src="assets/demo.gif" width="70%"></a> -->Usage and License Notices: This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses, including but not limited to the OpenAI Terms of Use for the dataset and the specific licenses for base language models for checkpoints trained using the dataset (e.g. Llama community license for LLaMA-2 and Vicuna-v1.5). This project does not impose any additional constraints beyond those stipulated in the original licenses. Furthermore, users are reminded to ensure that their use of the dataset and checkpoints is in compliance with all applicable laws and regulations.
Contents
Install
If you are not using Linux, do NOT proceed, see instructions for macOS and Windows.
- Clone this repository and navigate to LLaVA folder
git clone https://github.com/haotian-liu/LLaVA.git
cd LLaVA
- Install Package
conda create -n llava python=3.10 -y
conda activate llava
pip install --upgrade pip # enable PEP 660 support
pip install -e .
- Install additional packages for training cases
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
Upgrade to latest code base
git pull
pip install -e .
# if you see some import errors when you upgrade, please try running the command below (without #)
# pip install flash-attn --no-build-isolation --no-cache-dir
Quick Start With HuggingFace
<details> <summary>Example Code</summary>from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path
from llava.eval.run_llava import eval_model
model_path = "liuhaotian/llava-v1.5-7b"
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=model_path,
model_base=None,
model_name=get_model_name_from_path(model_path)
)
Check out the details wth the load_pretrained_model
function in llava/model/builder.py
.
You can also use the eval_model
function in llava/eval/run_llava.py
to get the output easily. By doing so, you can use this code on Colab directly after downloading this repository.
model_path = "liuhaotian/llava-v1.5-7b"
prompt = "What are the things I should be cautious about when I visit here?"
image_file = "https://llava-vl.github.io/static/images/view.jpg"
args = type('Args', (), {
"model_path": model_path,
"model_base": None,
"model_name": get_model_name_from_path(model_path),
"query": prompt,
"conv_mode": None,
"image_file": image_file,
"sep": ",",
"temperature": 0,
"top_p": None,
"num_beams": 1,
"max_new_tokens": 512
})()
eval_model(args)
</details>
LLaVA Weights
Please check out our Model Zoo for all public LLaVA checkpoints, and the instructions of how to use the weights.
Demo
Gradio Web UI
To launch a Gradio demo locally, please run the following commands one by one. If you plan to launch multiple model workers to compare between different checkpoints, you only need to launch the controller and the web server ONCE.
flowchart BT
%% Declare Nodes
gws("Gradio (UI Server)")
c("Controller (API Server):<br/>PORT: 10000")
mw7b("Model Worker:<br/>llava-v1.5-7b<br/>PORT: 40000")
mw13b("Model Worker:<br/>llava-v1.5-13b<br/>PORT: 40001")
sglw13b("SGLang Backend:<br/>llava-v1.6-34b<br/>http://localhost:30000")
lsglw13b("SGLang Worker:<br/>llava-v1.6-34b<br/>PORT: 40002")
%% Declare Styles
classDef data fill:#3af,stroke:#48a,stroke-width:2px,color:#444
classDef success fill:#8f8,stroke:#0a0,stroke-width:2px,color:#444
classDef failure fill:#f88,stroke:#f00,stroke-width:2px,color:#444
%% Assign Styles
class id,od data;
class cimg,cs_s,scsim_s success;
class ncimg,cs_f,scsim_f failure;
subgraph Demo Connections
direction BT
c<-->gws
mw7b<-->c
mw13b<-->c
lsglw13b<-->c
sglw13b<-->lsglw13b
end
Launch a controller
python -m llava.serve.controller --host 0.0.0.0 --port 10000
Launch a gradio web server.
python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload
You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
Launch a SGLang worker
This is the recommended way to serve LLaVA model with high throughput, and you need to install SGLang first. Note that currently 4-bit
quantization is not supported yet on SGLang-LLaVA, and if you have limited GPU VRAM, please check out model worker with quantization.
pip install "sglang[all]"
You'll first launch a SGLang backend worker which will execute the models on GPUs. Remember the --port
you've set and you'll use that later.
# Single GPU
CUDA_VISIBLE_DEVICES=0 python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --port 30000
# Multiple GPUs with tensor parallel
CUDA_VISIBLE_DEVICES=0,1 python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-13b --tokenizer-path llava-hf/llava-1.5-13b-hf --port 30000 --tp 2
Tokenizers (temporary): llava-hf/llava-1.5-7b-hf
, llava-hf/llava-1.5-13b-hf
, liuhaotian/llava-v1.6-34b-tokenizer
.
You'll then launch a LLaVA-SGLang worker that will communicate between LLaVA controller and SGLang backend to route the requests. Set --sgl-endpoint
to http://127.0.0.1:port
where port
is the one you just set (default: 30000).
python -m llava.serve.sglang_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --sgl-endpoint http://127.0.0.1:30000
Launch a model worker
This is the actual worker that performs the inference on the GPU. Each worker is responsible for a single model specified in --model-path
.
python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b
Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.
You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the --controller
the same, and modify the --port
and --worker
to a different port number for each worker.
python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2>
If you are using an Apple device with an M1 or M2 chip, you can specify the mps device by using the --device
flag: --device mps
.
Launch a model worker (Multiple GPUs, when GPU VRAM <= 24GB)
If the VRAM of your GPU is less than 24GB (e.g., RTX 3090, RTX 4090, etc.), you may try running it with multiple GPUs. Our latest code base will automatically try to use multiple GPUs if you have more than one GPU. You can specify which GPUs to use with CUDA_VISIBLE_DEVICES
. Below is an example of running with the first two GPUs.
CUDA_VISIBLE_DEVICES=0,1 python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b
Launch a model worker (4-bit, 8-bit inference, quantized)
You can launch the model worker with quantized bits (4-bit, 8-bit), which allows you to run the inference with reduced GPU memory footprint, potentially allowing you to run on a GPU with as few as 12GB VRAM. Note that inference with quantized bits may not be as accurate as the full-precision model. Simply append --load-4bit
or --load-8bit
to the model worker command that you are executing. Below is an example of running with 4-bit quantization.
python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b --load-4bit
Launch a model worker (LoRA weights, unmerged)
You can launch the model worker with LoRA weights, without merging them with the base checkpoint, to save disk space. There will be additional loading time, while the inference speed is the same as the merged checkpoints. Unmerged LoRA checkpoints do not have lora-merge
in the model name, and are usually much smaller (less than 1GB) than the merged checkpoints (13G for 7B, and 25G for 13B).
To load unmerged LoRA weights, you simply need to pass an additional argument --model-base
, which is the base LLM that is used to train the LoRA weights. You can check the base LLM of each LoRA weights in the model zoo.
python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1-0719-336px-lora-vicuna-13b-v1.3 --model-base lmsys/vicuna-13b-v1.3
CLI Inference
Chat about images using LLaVA without the need of Gradio interface. It also supports multiple GPUs, 4-bit and 8-bit quantized inference. With 4-bit quantization, for our LLaVA-1.5-7B, it uses less than 8GB VRAM on a single GPU.
python -m llava.serve.cli \
--model-path liuhaotian/llava-v1.5-7b \
--image-file "https://llava-vl.github.io/static/images/view.jpg" \
--load-4bit
<img src="images/demo_cli.gif" width="70%">
Train
Below is the latest training configuration for LLaVA v1.5. For legacy models, please refer to README of this version for now. We'll add them in a separate doc later.
LLaVA training consists of two stages: (1) feature alignment stage: use our 558K subset of the LAION-CC-SBU dataset to connect a frozen pretrained vision encoder to a frozen LLM; (2) visual instruction tuning stage: use 150K GPT-generated multimodal instruction-following data, plus around 515K VQA data from academic-oriented tasks, to teach the model to follow multimodal instructions.
LLaVA is trained on 8 A100 GPUs with 80GB memory. To train on fewer GPUs, you can reduce the per_device_train_batch_size
and increase the gradient_accumulation_steps
accordingly. Always keep the global batch size the same: per_device_train_batch_size
x gradient_accumulation_steps
x num_gpus
.
Hyperparameters
We use a similar set of hyperparameters as Vicuna in finetuning. Both hyperparameters used in pretraining and finetuning are provided below.
- Pretraining
Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
---|---|---|---|---|---|
LLaVA-v1.5-13B | 256 | 1e-3 | 1 | 2048 | 0 |
- Finetuning
Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
---|---|---|---|---|---|
LLaVA-v1.5-13B | 128 | 2e-5 | 1 | 2048 | 0 |
Download Vicuna checkpoints (automatically)
Our base model Vicuna v1.5, which is an instruction-tuned chatbot, will be downloaded automatically when you run our provided training scripts. No action is needed.
Pretrain (feature alignment)
Please download the 558K subset of the LAION-CC-SBU dataset with BLIP captions we use in the paper here.
Pretrain takes around 5.5 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 3.5 hours for LLaVA-v1.5-7B.
Training script with DeepSpeed ZeRO-2: pretrain.sh
.
--mm_projector_type mlp2x_gelu
: the two-layer MLP vision-language connector.--vision_tower openai/clip-vit-large-patch14-336
: CLIP ViT-L/14 336px.
We provide training script with DeepSpeed here. Tips:
- If you are using V100 which is not supported by FlashAttention, you can use the memory-efficient attention implemented in xFormers. Install xformers and replace
llava/train/train_mem.py
above with llava/train/train_xformers.py.
Visual Instruction Tuning
- Prepare data
Please download the annotation of the final mixture our instruction tuning data llava_v1_5_mix665k.json, and download the images from constituting datasets:
- COCO: train2017
- GQA: images
- OCR-VQA: download script, we save all files as
.jpg
- TextVQA: train_val_images
- VisualGenome: part1, part2
After downloading all of them, organize the data as follows in $ROOT_DATA
,
├── coco
│ └── train2017
├── gqa
│ └── images
├── ocr_vqa
│ └── images
├── textvqa
│ └── train_images
└── vg
├── VG_100K
└── VG_100K_2
- Start training!
You may download our pretrained projectors in Model Zoo. It is not recommended to use legacy projectors, as they may be trained with a different version of the codebase, and if any option is off, the model will not function/train as we expected.
Visual instruction tuning takes around 20 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 10 hours for LLaVA-v1.5-7B on 8x A100 (40G).
Training script with DeepSpeed ZeRO-3: finetune.sh
.
If you are do not have enough GPU memory:
- Use LoRA:
finetune_lora.sh
. We are able to fit 13B training in 8-A100-40G/8-A6000, and 7B training in 8-RTX3090. Make sureper_device_train_batch_size*gradient_accumulation_steps
is the same as the provided script for best reproducibility. - Replace
zero3.json
withzero3_offload.json
which offloads some parameters to CPU RAM. This slows down the training speed.
If you are interested in finetuning LLaVA model to your own task/data, please check out Finetune_Custom_Data.md
。
New options to note:
--mm_projector_type mlp2x_gelu
: the two-layer MLP vision-language connector.--vision_tower openai/clip-vit-large-patch14-336
: CLIP ViT-L/14 336px.--image_aspect_ratio pad
: this pads the non-square images to square, instead of cropping them; it slightly reduces hallucination.--group_by_modality_length True
: this should only be used when your instruction tuning dataset contains both language (e.g. ShareGPT) and multimodal (e.g. LLaVA-Instruct). It makes the training sampler only sample a single modality (either image or language) during training, which we observe to speed up training by ~25%, and does not affect the final outcome.
Evaluation
In LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs.
See Evaluation.md.
GPT-assisted Evaluation
Our GPT-assisted evaluation pipeline for multimodal modeling is provided for a comprehensive understanding of the capabilities of vision-language models. Please see our paper for more details.
- Generate LLaVA responses
python model_vqa.py \
--model-path ./checkpoints/LLaVA-13B-v0 \
--question-file \
playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \
--image-folder \
/path/to/coco2014_val \
--answers-file \
/path/to/answer-file-our.jsonl
- Evaluate the generated responses. In our case,
answer-file-ref.jsonl
is the response generated by text-only GPT-4 (0314), with the context captions/boxes provided.
OPENAI_API_KEY="sk-***********************************" python llava/eval/eval_gpt_review_visual.py \
--question playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \
--context llava/eval/table/caps_boxes_coco2014_val_80.jsonl \
--answer-list \
/path/to/answer-file-ref.jsonl \
/path/to/answer-file-our.jsonl \
--rule llava/eval/table/rule.json \
--output /path/to/review.json
- Summarize the evaluation results
python summarize_gpt_review.py
Citation
If you find LLaVA useful for your research and applications, please cite using this BibTeX:
@misc{liu2024llavanext,
title={LLaVA-NeXT: Improved reasoning, OCR, and world knowledge},
url={https://llava-vl.github.io/blog/2024-01-30-llava-next/},
author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Li, Bo and Zhang, Yuanhan and Shen, Sheng and Lee, Yong Jae},
month={January},
year={2024}
}
@misc{liu2023improvedllava,
title={Improved Baselines with Visual Instruction Tuning},
author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Lee, Yong Jae},
publisher={arXiv:2310.03744},
year={2023},
}
@misc{liu2023llava,
title={Visual Instruction Tuning},
author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae},
publisher={NeurIPS},
year={2023},
}
Acknowledgement
- Vicuna: the codebase we built upon, and our base model Vicuna-13B that has the amazing language capabilities!
Related Projects
- Instruction Tuning with GPT-4
- LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day
- Otter: In-Context Multi-Modal Instruction Tuning
For future project ideas, please check out:
- SEEM: Segment Everything Everywhere All at Once
- Grounded-Segment-Anything to detect, segment, and generate anything by marrying Grounding DINO and Segment-Anything.