Home

Awesome

HackerMath for Machine Learning

“Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard Feynman

Math literacy, including proficiency in Linear Algebra and Statistics,is a must for anyone pursuing a career in data science. The goal of this workshop is to introduce some key concepts from these domains that get used repeatedly in data science applications. Our approach is what we call the “Hacker’s way”. Instead of going back to formulae and proofs, we teach the concepts by writing code. And in practical applications. Concepts don’t remain sticky if the usage is never taught.

The focus will be on depth rather than breadth. Three areas are chosen - Hypothesis Testing, Supervised Learning and Unsupervised Learning. They will be covered to sufficient depth - 50% of the time will be on the concepts and 50% of the time will be spent coding them.

<a href="https://www.youtube.com/watch?v=UqwsRzFmu3c"><img src="img/hackermath_video.png"></a>

More details at http://amitkaps.com/hackermath

See it in action: Binder

Module #1: Hypothesis Testing

Math Concepts

ML Applications

Module #2: Supervised Learning

Math Concepts

ML Applications

Module #3: Unsupervised Learning

Math Concepts

ML Applications

Target Audience

Pre-requisites

Software Requirements

You will require the Python data stack for the workshop. Please install Ananconda for Python 3.5 for the workshop. That has everything we need for the workshop. For attendees more curious, we will be using Jupyter Notebook as our IDE. We will be introducing numpy, scipy, seaborn, matplotlib, plotnine, statsmodel and scikit-learn.

The working repo for this workshop is at https://github.com/amitkaps/hackermath/


Authors:

Amit Kapoor

Bargava Subramanian