Awesome
OnPrem.LLM
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->A tool for running large language models on-premises using non-public data
OnPrem.LLM is a simple Python package that makes it easier to run large language models (LLMs) on your own machines using non-public data (possibly behind corporate firewalls). Inspired largely by the privateGPT GitHub repo, OnPrem.LLM is intended to help integrate local LLMs into practical applications.
The full documentation is here.
A Google Colab demo of installing and using OnPrem.LLM is here.
Latest News π₯
-
[2024/11] v0.5.0 released and now includes support for running LLMs with Hugging Face transformers as the backend instead of llama.cpp. See this example.
-
[2024/11] v0.4.0 released and now includes a
default_model
parameter to more easily use models like Llama-3.1 and Zephyr-7B-beta. -
[2024/10] v0.3.0 released and now includes support for concept-focused summarization
-
[2024/09] v0.2.0 released and now includes PDF OCR support and better PDF table handling.
-
[2024/06] v0.1.0 of OnPrem.LLM has been released. Lots of new updates!
- Ability to use with any OpenAI-compatible API (e.g., vLLM, Ollama, OpenLLM, etc.).
- Pipeline for information extraction from raw documents.
- Pipeline for few-shot text classification (i.e., training a classifier on a tiny number of labeled examples) along with the ability to explain few-shot predictions.
- Default model changed to Mistral-7B-Instruct-v0.2
- API augmentations and bug fixes
Install
Once you have installed PyTorch, you can install OnPrem.LLM with the following steps:
-
Install llama-cpp-python by visiting this site and following instructions for your operating system and machine. For CPU-based installations (i.e., no GPU acceleration), you can simply do:
pip install llama-cpp-python
. -
Install OnPrem.LLM:
pip install onprem
For fast GPU-accelerated inference, see additional instructions below. See the FAQ, if you experience issues with llama-cpp-python installation.
Note: Installing llama-cpp-python is optional if either the following is true:
- You supply the
model_id
parameter when instantiating an LLM, as shown here. - You are using OnPrem.LLM with an LLM being served through an external REST API (e.g., vLLM, OpenLLM, Ollama).
How to Use
Setup
from onprem import LLM
llm = LLM()
By default, a 7B-parameter model (Mistral-7B-Instruct-v0.2) is
downloaded and used. If default_model='llama'
is supplied, then a
Llama-3.1-8B-Instsruct model is automatically downloaded and used
(which is useful if the default Mistral model struggles with a
particular task):
# Llama 3.1 is downloaded here and the correct prompt template for Llama-3.1 is automatically configured and used
llm = LLM(default_model='llama')
Similarly, suppyling default_model='zephyr
, will use
Zephyr-7B-beta. Of course, you can also easily supply the URL to an
LLM of your choosing to
LLM
(see the code
generation section
below for an
example or the FAQ). Any extra
parameters supplied to
LLM
are forwarded
directly to llama-cpp-python
.
Send Prompts to the LLM to Solve Problems
This is an example of few-shot prompting, where we provide an example of what we want the LLM to do.
prompt = """Extract the names of people in the supplied sentences. Here is an example:
Sentence: James Gandolfini and Paul Newman were great actors.
People:
James Gandolfini, Paul Newman
Sentence:
I like Cillian Murphy's acting. Florence Pugh is great, too.
People:"""
saved_output = llm.prompt(prompt)
Cillian Murphy, Florence Pugh.
Additional prompt examples are shown here.
Talk to Your Documents
Answers are generated from the content of your documents (i.e., retrieval augmented generation or RAG). Here, we will use GPU offloading to speed up answer generation using the default model. However, the Zephyr-7B model may perform even better, responds faster, and is used in our example notebook.
from onprem import LLM
llm = LLM(n_gpu_layers=-1)
Step 1: Ingest the Documents into a Vector Database
llm.ingest("./sample_data")
Creating new vectorstore at /home/amaiya/onprem_data/vectordb
Loading documents from ./sample_data
Loaded 12 new documents from ./sample_data
Split into 153 chunks of text (max. 500 chars each)
Creating embeddings. May take some minutes...
Ingestion complete! You can now query your documents using the LLM.ask or LLM.chat methods
Loading new documents: 100%|ββββββββββββββββββββββ| 3/3 [00:00<00:00, 13.71it/s]
100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 1/1 [00:02<00:00, 2.49s/it]
Step 2: Answer Questions About the Documents
question = """What is ktrain?"""
result = llm.ask(question)
Ktrain is a low-code machine learning library designed to facilitate the full machine learning workflow from curating and preprocessing inputs to training, tuning, troubleshooting, and applying models. Ktrain is well-suited for domain experts who may have less experience with machine learning and software coding.
The sources used by the model to generate the answer are stored in
result['source_documents']
:
print("\nSources:\n")
for i, document in enumerate(result["source_documents"]):
print(f"\n{i+1}.> " + document.metadata["source"] + ":")
print(document.page_content)
Sources:
1.> /home/amaiya/projects/ghub/onprem/nbs/sample_data/1/ktrain_paper.pdf:
lection (He et al., 2019). By contrast, ktrain places less emphasis on this aspect of au-
tomation and instead focuses on either partially or fully automating other aspects of the
machine learning (ML) workο¬ow. For these reasons, ktrain is less of a traditional Au-
2
2.> /home/amaiya/projects/ghub/onprem/nbs/sample_data/1/ktrain_paper.pdf:
possible, ktrain automates (either algorithmically or through setting well-performing de-
faults), but also allows users to make choices that best ο¬t their unique application require-
ments. In this way, ktrain uses automation to augment and complement human engineers
rather than attempting to entirely replace them. In doing so, the strengths of both are
better exploited. Following inspiration from a blog post1 by Rachel Thomas of fast.ai
3.> /home/amaiya/projects/ghub/onprem/nbs/sample_data/1/ktrain_paper.pdf:
with custom models and data formats, as well.
Inspired by other low-code (and no-
code) open-source ML libraries such as fastai (Howard and Gugger, 2020) and ludwig
(Molino et al., 2019), ktrain is intended to help further democratize machine learning by
enabling beginners and domain experts with minimal programming or data science experi-
4. http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
6
4.> /home/amaiya/projects/ghub/onprem/nbs/sample_data/1/ktrain_paper.pdf:
ktrain: A Low-Code Library for Augmented Machine Learning
toML platform and more of what might be called a βlow-codeβ ML platform. Through
automation or semi-automation, ktrain facilitates the full machine learning workο¬ow from
curating and preprocessing inputs (i.e., ground-truth-labeled training data) to training,
tuning, troubleshooting, and applying models. In this way, ktrain is well-suited for domain
experts who may have less experience with machine learning and software coding. Where
Summarization Pipeline
Summarize your raw documents (e.g., PDFs, MS Word) with an LLM.
Map-Reduce Summarization
Summarize each chunk in a document and then generate a single summary from the individual summaries.
from onprem import LLM
llm = LLM(n_gpu_layers=-1, verbose=False, mute_stream=True) # disabling viewing of intermediate summarization prompts/inferences
from onprem.pipelines import Summarizer
summ = Summarizer(llm)
resp = summ.summarize('sample_data/1/ktrain_paper.pdf', max_chunks_to_use=5) # omit max_chunks_to_use parameter to consider entire document
print(resp['output_text'])
Ktrain is an open-source machine learning library that offers a unified interface for various machine learning tasks. The library supports both supervised and non-supervised machine learning, and includes methods for training models, evaluating models, making predictions on new data, and providing explanations for model decisions. Additionally, the library integrates with various explainable AI libraries such as shap, eli5 with lime, and others to provide more interpretable models.
Concept-Focused Summarization
Summarize a large document with respect to a particular concept of interest.
from onprem import LLM
from onprem.pipelines import Summarizer
llm = LLM(default_model='zephyr', n_gpu_layers=-1, verbose=False, temperature=0)
summ = Summarizer(llm)
summary, sources = summ.summarize_by_concept('sample_data/1/ktrain_paper.pdf', concept_description="question answering")
The context provided describes the implementation of an open-domain question-answering system using ktrain, a low-code library for augmented machine learning. The system follows three main steps: indexing documents into a search engine, locating documents containing words in the question, and extracting candidate answers from those documents using a BERT model pretrained on the SQuAD dataset. Confidence scores are used to sort and prune candidate answers before returning results. The entire workflow can be implemented with only three lines of code using ktrain's SimpleQA module. This system allows for the submission of natural language questions and receives exact answers, as demonstrated in the provided example. Overall, the context highlights the ease and accessibility of building sophisticated machine learning models, including open-domain question-answering systems, through ktrain's low-code interface.
Information Extraction Pipeline
Extract information from raw documents (e.g., PDFs, MS Word documents) with an LLM.
from onprem import LLM
from onprem.pipelines import Extractor
# Notice that we're using a cloud-based, off-premises model here! See "OpenAI" section below.
llm = LLM(model_url='openai://gpt-3.5-turbo', verbose=False, mute_stream=True, temperature=0)
extractor = Extractor(llm)
prompt = """Extract the names of research institutions (e.g., universities, research labs, corporations, etc.)
from the following sentence delimited by three backticks. If there are no organizations, return NA.
If there are multiple organizations, separate them with commas.
```{text}```
"""
df = extractor.apply(prompt, fpath='sample_data/1/ktrain_paper.pdf', pdf_pages=[1], stop=['\n'])
df.loc[df['Extractions'] != 'NA'].Extractions[0]
/home/amaiya/projects/ghub/onprem/onprem/core.py:159: UserWarning: The model you supplied is gpt-3.5-turbo, an external service (i.e., not on-premises). Use with caution, as your data and prompts will be sent externally.
warnings.warn(f'The model you supplied is {self.model_name}, an external service (i.e., not on-premises). '+\
'Institute for Defense Analyses'
Few-Shot Classification
Make accurate text classification predictions using only a tiny number of labeled examples.
# create classifier
from onprem.pipelines import FewShotClassifier
clf = FewShotClassifier(use_smaller=True)
# Fetching data
from sklearn.datasets import fetch_20newsgroups
import pandas as pd
import numpy as np
classes = ["soc.religion.christian", "sci.space"]
newsgroups = fetch_20newsgroups(subset="all", categories=classes)
corpus, group_labels = np.array(newsgroups.data), np.array(newsgroups.target_names)[newsgroups.target]
# Wrangling data into a dataframe and selecting training examples
data = pd.DataFrame({"text": corpus, "label": group_labels})
train_df = data.groupby("label").sample(5)
test_df = data.drop(index=train_df.index)
# X_sample only contains 5 examples of each class!
X_sample, y_sample = train_df['text'].values, train_df['label'].values
# test set
X_test, y_test = test_df['text'].values, test_df['label'].values
# train
clf.train(X_sample, y_sample, max_steps=20)
# evaluate
print(clf.evaluate(X_test, y_test)['accuracy'])
#output: 0.98
# make predictions
clf.predict(['Elon Musk likes launching satellites.']).tolist()[0]
#output: sci.space
Text to Code Generation
Weβll use the CodeUp LLM by supplying the URL and employing the particular prompt format this model expects.
from onprem import LLM
url = "https://huggingface.co/TheBloke/CodeUp-Llama-2-13B-Chat-HF-GGUF/resolve/main/codeup-llama-2-13b-chat-hf.Q4_K_M.gguf"
llm = LLM(url, n_gpu_layers=-1) # see below for GPU information
Setup the prompt based on what this model expects (this is important):
template = """
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{prompt}
### Response:"""
You can supply the prompte_template
to either the
LLM
constructor
(above) or the
LLM.prompt
method. We will do the latter here:
answer = llm.prompt(
"Write Python code to validate an email address.", prompt_template=template
)
Here is an example of Python code that can be used to validate an email address:
```
import re
def validate_email(email):
# Use a regular expression to check if the email address is in the correct format
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
if re.match(pattern, email):
return True
else:
return False
# Test the validate_email function with different inputs
print("Email address is valid:", validate_email("example@example.com")) # Should print "True"
print("Email address is invalid:", validate_email("example@")) # Should print "False"
print("Email address is invalid:", validate_email("example.com")) # Should print "False"
```
The code defines a function `validate_email` that takes an email address as input and uses a regular expression to check if the email address is in the correct format. The regular expression checks for an email address that consists of one or more letters, numbers, periods, hyphens, or underscores followed by the `@` symbol, followed by one or more letters, periods, hyphens, or underscores followed by a `.` and two to three letters.
The function returns `True` if the email address is valid, and `False` otherwise. The code also includes some test examples to demonstrate how to use the function.
Letβs try out the code generated above.
import re
def validate_email(email):
# Use a regular expression to check if the email address is in the correct format
pattern = r"^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$"
if re.match(pattern, email):
return True
else:
return False
print(validate_email("sam@@openai.com")) # bad email address
print(validate_email("sam@openai")) # bad email address
print(validate_email("sam@openai.com")) # good email address
False
False
True
The generated code may sometimes need editing, but this one worked out-of-the-box.
Using Hugging Face Transformers Instead of Llama.cpp
By default, the LLM backend employed by OnPrem.LLM is
llama-cpp-python, which
requires models in GGUF format.
As of v0.5.0, it is now possible to use Hugging Face
transformers as the LLM
backend instead. This is accomplished by using the model_id
parameter
(instead of supplying a model_url
argument). In the example below, we
run the
Zephyr-7B-beta
model.
# llama-cpp-python does NOT need to be installed when using model_id parameter
llm = LLM(model_id="HuggingFaceH4/zephyr-7b-beta")
This allows you to more easily use any model on the Hugging Face hub in
SafeTensors format
provided it can be loaded with transformers.AutoModelForCausalLM
(or
transformers.AutoModelForVision2Seq
). Note that, when using the
model_id
parameter, the prompt_template
is set automatically by
transformers
.
Using the transformers
backend requires the
bitsandbytes
library, a lightweight Python wrapper around CUDA custom functions, in
particular 8-bit optimizers, matrix multiplication (LLM.int8()), and 8 &
4-bit quantization functions. There are ongoing efforts by the
bitsandbytes team to support multiple backends in addition to CUDA.
However, we have only tested with a CUDA backend (CUDA 12.x). If you
receive errors related to bitsandbytes, please refer to the
bitsandbytes
documentation.
Connecting to LLMs Served Through REST APIs
OnPrem.LLM can be used with LLMs being served through any OpenAI-compatible REST API. This means you can easily use OnPrem.LLM with tools like vLLM, OpenLLM, Ollama, and the llama.cpp server.
For instance, using vLLM, you can serve a LLaMA 3 model as follows:
python -m vllm.entrypoints.openai.api_server --model NousResearch/Meta-Llama-3-8B-Instruct --dtype auto --api-key token-abc123
You can then connect OnPrem.LLM to the LLM by supplying the URL of the server you just started:
from onprem import LLM
llm = LLM(model_url='http://localhost:8000/v1', api_key='token-abc123')
# Note: The API key can either be supplied directly or stored in the OPENAI_API_KEY environment variable.
# If the server does not require an API key, `api_key` should still be supplied with a dummy value like 'na'.
Thatβs it! Solve problems with OnPrem.LLM as you normally would (e.g., RAG question-answering, summarization, few-shot prompting, code generation, etc.).
Using OpenAI Models with OnPrem.LLM
Even when using on-premises language models, it can sometimes be useful to have easy access to non-local, cloud-based models (e.g., OpenAI) for testing, producing baselines for comparison, and generating synthetic examples for fine-tuning. For these reasons, in spite of the name, OnPrem.LLM now includes support for OpenAI chat models:
from onprem import LLM
llm = LLM(model_url='openai://gpt-4o', temperature=0)
/home/amaiya/projects/ghub/onprem/onprem/core.py:196: UserWarning: The model you supplied is gpt-4o, an external service (i.e., not on-premises). Use with caution, as your data and prompts will be sent externally.
warnings.warn(f'The model you supplied is {self.model_name}, an external service (i.e., not on-premises). '+\
This OpenAI LLM
instance can now be used with as the engine for most features in
OnPrem.LLM (e.g., RAG, information extraction, summarization, etc.).
Here we simply use it for general prompting:
saved_result = llm.prompt('List three cute names for a cat and explain why each is cute.')
Certainly! Here are three cute names for a cat, along with explanations for why each is adorable:
1. **Whiskers**: This name is cute because it highlights one of the most distinctive and charming features of a catβtheir whiskers. It's playful and endearing, evoking the image of a curious cat twitching its whiskers as it explores its surroundings.
2. **Mittens**: This name is cute because it conjures up the image of a cat with little white paws that look like they are wearing mittens. It's a cozy and affectionate name that suggests warmth and cuddliness, much like a pair of soft mittens.
3. **Pumpkin**: This name is cute because it brings to mind the warm, orange hues of a pumpkin, which can be reminiscent of certain cat fur colors. It's also associated with the fall season, which is often linked to comfort and coziness. Plus, the name "Pumpkin" has a sweet and affectionate ring to it, making it perfect for a beloved pet.
Using Vision Capabilities in GPT-4o
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
saved_result = llm.prompt('Describe the weather in this image.', image_path_or_url=image_url)
The weather in the image appears to be clear and sunny. The sky is mostly blue with some scattered clouds, suggesting a pleasant day with good visibility. The sunlight is bright, illuminating the green grass and landscape.
Using OpenAI-Style Message Dictionaries
messages = [
{'content': [{'text': 'describe the weather in this image',
'type': 'text'},
{'image_url': {'url': image_url},
'type': 'image_url'}],
'role': 'user'}]
saved_result = llm.prompt(messages)
The weather in the image appears to be clear and sunny. The sky is mostly blue with some scattered clouds, suggesting a pleasant day with good visibility. The sunlight is bright, casting clear shadows and illuminating the green landscape.
Azure OpenAI
For Azure OpenAI models, use the following URL format:
llm = LLM(model_url='azure://<deployment_name>', ...)
# <deployment_name> is the Azure deployment name and additional Azure-specific parameters
# can be supplied as extra arguments to LLM (or set as environment variables)
Guided Prompts
You can use OnPrem.LLM with the Guidance package to guide the LLM to generate outputs based on your conditions and constraints. Weβll show a couple of examples here, but see our documentation on guided prompts for more information.
from onprem import LLM
llm = LLM(n_gpu_layers=-1, verbose=False)
from onprem.guider import Guider
guider = Guider(llm)
With the Guider, you can use use Regular Expressions to control LLM generation:
prompt = f"""Question: Luke has ten balls. He gives three to his brother. How many balls does he have left?
Answer: """ + gen(name='answer', regex='\d+')
guider.prompt(prompt, echo=False)
{'answer': '7'}
prompt = '19, 18,' + gen(name='output', max_tokens=50, stop_regex='[^\d]7[^\d]')
guider.prompt(prompt)
<pre style='margin: 0px; padding: 0px; padding-left: 8px; margin-left: -8px; border-radius: 0px; border-left: 1px solid rgba(127, 127, 127, 0.2); white-space: pre-wrap; font-family: ColfaxAI, Arial; font-size: 15px; line-height: 23px;'>19, 18<span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>,</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'> 1</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>7</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>,</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'> 1</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>6</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>,</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'> 1</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>5</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>,</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'> 1</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>4</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>,</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'> 1</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>3</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>,</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'> 1</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>2</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>,</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'> 1</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>1</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>,</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'> 1</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>0</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>,</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'> 9</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>,</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'> 8</span><span style='background-color: rgba(0, 165, 0, 0.15); border-radius: 3px;' title='0.0'>,</span></pre>
{'output': ' 17, 16, 15, 14, 13, 12, 11, 10, 9, 8,'}
See the documentation for more examples of how to use Guidance with OnPrem.LLM.
Built-In Web App
OnPrem.LLM includes a built-in Web app to access the LLM. To start it, run the following command after installation:
onprem --port 8000
Then, enter localhost:8000
(or <domain_name>:8000
if running on
remote server) in a Web browser to access the application:
For more information, see the corresponding documentation.
Speeding Up Inference Using a GPU
The above example employed the use of a CPU. If you have a GPU (even an
older one with less VRAM), you can speed up responses. See the
llama-cpp-python
documentation
for installing llama-cpp-python
with GPU support for your system.
The steps below describe installing and using llama-cpp-python
with
CUDA
support and can be employed for GPU acceleration on systems with
NVIDIA GPUs (e.g., Linux, WSL2, Google Colab).
Step 1: Install llama-cpp-python
with GPU support
CMAKE_ARGS="-DGGML_CUDA=on" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python --no-cache-dir
# For Mac users replace above with:
# CMAKE_ARGS="-DGGML_METAL=on" FORCE_CMAKE=1 pip install --upgrade --force-reinstall llama-cpp-python --no-cache-dir
Step 2: Use the n_gpu_layers
argument with LLM
llm = LLM(n_gpu_layers=35)
The value for n_gpu_layers
depends on your GPU memory and the model
youβre using (e.g., max of 33 for default 7B model). Set
n_gpu_layers=-1
to offload all layers to the GPU (this will offload
all 33 layers to the default model). You can reduce the value if you get
an error (e.g., CUDA error: out-of-memory
). For instance, using two
old NVDIDIA TITAN V GPUs each with 12GB of VRAM, 59 out 83 layers in a
quantized Llama-2 70B
model
can be offloaded to the GPUs (i.e., 60 layers or more results in a βCUDA
out of memoryβ error).
With the steps above, calls to methods like llm.prompt
will offload
computation to your GPU and speed up responses from the LLM.
The above assumes that NVIDIA drivers and the CUDA toolkit are already installed. On Ubuntu Linux systems, this can be accomplished with a single command.
FAQ
-
How do I use other models with OnPrem.LLM?
You can supply the URL to other models to the
LLM
constructor, as we did above in the code generation example.As of v0.0.20, we support models in GGUF format, which supersedes the older GGML format. You can find llama.cpp-supported models with
GGUF
in the file name on huggingface.co.Make sure you are pointing to the URL of the actual GGUF model file, which is the βdownloadβ link on the modelβs page. An example for Mistral-7B is shown below:
<img src="https://raw.githubusercontent.com/amaiya/onprem/master/images/model_download_link.png" border="1" alt="screenshot" width="775"/>
Note that some models have specific prompt formats. For instance, the prompt template required for Zephyr-7B, as described on the modelβs page, is:
<|system|>\n</s>\n<|user|>\n{prompt}</s>\n<|assistant|>
So, to use the Zephyr-7B model, you must supply the
prompt_template
argument to theLLM
constructor (or specify it in thewebapp.yml
configuration for the Web app).# how to use Zephyr-7B with OnPrem.LLM llm = LLM(model_url='https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF/resolve/main/zephyr-7b-beta.Q4_K_M.gguf', prompt_template = "<|system|>\n</s>\n<|user|>\n{prompt}</s>\n<|assistant|>", n_gpu_layers=33) llm.prompt("List three cute names for a cat.")
-
When installing
onprem
, Iβm getting βbuildβ errors related tollama-cpp-python
(orchroma-hnswlib
) on Windows/Mac/Linux?See this LangChain documentation on LLama.cpp for help on installing the
llama-cpp-python
package for your system. Additional tips for different operating systems are shown below:For Linux systems like Ubuntu, try this:
sudo apt-get install build-essential g++ clang
. Other tips are here.For Windows systems, please try following these instructions. We recommend you use Windows Subsystem for Linux (WSL) instead of using Microsoft Windows directly. If you do need to use Microsoft Window directly, be sure to install the Microsoft C++ Build Tools and make sure the Desktop development with C++ is selected.
For Macs, try following these tips.
There are also various other tips for each of the above OSes in this privateGPT repo thread. Of course, you can also easily use OnPrem.LLM on Google Colab.
Finally, if you still canβt overcome issues with building
llama-cpp-python
, you can try installing the pre-built wheel file for your system:Example:
pip install llama-cpp-python==0.2.90 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
Tip: There are pre-built wheel files for
chroma-hnswlib
, as well. If runningpip install onprem
fails on buildingchroma-hnswlib
, it may be because a pre-built wheel doesnβt yet exist for the version of Python youβre using (in which case you can try downgrading Python). -
Iβm behind a corporate firewall and am receiving an SSL error when trying to download the model?
Try this:
from onprem import LLM LLM.download_model(url, ssl_verify=False)
You can download the embedding model (used by
LLM.ingest
andLLM.ask
) as follows:wget --no-check-certificate https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/all-MiniLM-L6-v2.zip
Supply the unzipped folder name as the
embedding_model_name
argument toLLM
.If youβre getting SSL errors when even running
pip install
, try this:pip install β-trusted-host pypi.org β-trusted-host files.pythonhosted.org pip_system_certs
-
How do I use this on a machine with no internet access?
Use the
LLM.download_model
method to download the model files to<your_home_directory>/onprem_data
and transfer them to the same location on the air-gapped machine.For the
ingest
andask
methods, you will need to also download and transfer the embedding model files:from sentence_transformers import SentenceTransformer model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') model.save('/some/folder')
Copy the
some/folder
folder to the air-gapped machine and supply the path toLLM
via theembedding_model_name
parameter. -
My model is not loading when I call
llm = LLM(...)
?This can happen if the model file is corrupt (in which case you should delete from
<home directory>/onprem_data
and re-download). It can also happen if the version ofllama-cpp-python
needs to be upgraded to the latest. -
Iβm getting an
βIllegal instruction (core dumped)
error when instantiating alangchain.llms.Llamacpp
oronprem.LLM
object?Your CPU may not support instructions that
cmake
is using for one reason or another (e.g., due to Hyper-V in VirtualBox settings). You can try turning them off when building and installingllama-cpp-python
:# example CMAKE_ARGS="-DGGML_CUDA=ON -DGGML_AVX2=OFF -DGGML_AVX=OFF -DGGML_F16C=OFF -DGGML_FMA=OFF" FORCE_CMAKE=1 pip install --force-reinstall llama-cpp-python --no-cache-dir
-
How can I speed up
LLM.ingest
using my GPU?Try using the
embedding_model_kwargs
argument:from onprem import LLM llm = LLM(embedding_model_kwargs={'device':'cuda'})