Home

Awesome

<div align="center"> <table> <tbody> <tr> <td>Drop a star to support Aim ⭐</td> <td> <a href="https://community.aimstack.io/">Join Aim discord community</a> <img width="20px" src="https://user-images.githubusercontent.com/13848158/226759622-063b725d-8b3e-4c75-80c7-11fb04b7adf5.png"> </td> </tr> </tbody> </table> </div> <div align="center"> <img src="https://user-images.githubusercontent.com/13848158/225620298-9f9293e9-a138-41fd-bd77-21d53d0490b7.png"> <h3> An easy-to-use & supercharged open-source experiment tracker </h3> Aim logs your training runs and any AI Metadata, enables a beautiful UI to compare, observe them and an API to query them programmatically. </div> <br/> <div align="center">

Discord Server Twitter Follow Medium

Platform Support PyPI - Python Version PyPI Package License PyPI Downloads Issues

</div> <div align="center"> <br/> <kbd> <img src="https://user-images.githubusercontent.com/13848158/136374529-af267918-5dc6-4a4e-8ed2-f6333a332f96.gif" /> </kbd> </div> </br> <div align="center"> <sub><strong>SEAMLESSLY INTEGRATES WITH:</strong></sub> <br/> <br/> <img src="https://user-images.githubusercontent.com/97726819/225954732-2b263308-8ed8-4df3-810b-704840328e98.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954727-04eccf0e-51ed-4f2d-8f3b-c9a675ca8e8f.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954728-ca2f498d-51a7-487b-bd69-ffb5f0c2af58.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954689-1076998c-42f4-4e31-ab47-d9f39575fda1.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954739-0231d659-3202-4458-9c35-ba92d1f079b8.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954697-ef2c7091-b089-4b68-8543-80ce7275b683.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954743-dbfe1e98-7b9f-446a-9fe4-ad4fd562f3df.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954736-7c52ab5a-6780-4375-a6f8-b394dae3ad31.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954710-36551a71-b26d-4665-af20-44ee452dd5dd.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954707-4bc078b5-ae6f-4847-bc2c-3f81959accb2.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954725-a4d4c32c-75db-470a-b1da-698982faa23c.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954665-8d844747-a857-41b8-9104-7c27a8bdb81a.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954686-b9c8ec57-d4fc-44e1-a4b8-443db381a00f.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954693-94bc20b4-f51a-4130-8d5f-ddee30d81205.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954674-42fbfdb3-0351-492d-9ea3-1d3ab2b545f5.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954678-25f1b626-2cb1-4e7e-ad83-f7c8ab679c6f.png" height="60" /> <img src="https://user-images.githubusercontent.com/97726819/225954702-d18d2706-dc87-4e09-a678-f010f6d95736.png" height="60" /> </div> <br/> <div align="center"> <sub><strong>TRUSTED BY ML TEAMS FROM:</strong></sub> <br/> <br/> <img src="https://user-images.githubusercontent.com/97726819/225952594-a21546f4-987f-42bd-9154-c22b50632b55.png" height="55" /> <img src="https://user-images.githubusercontent.com/97726819/225953224-291fbb6d-e31a-4e36-90ba-92a1dc20bacc.png" height="55" /> <img src="https://user-images.githubusercontent.com/97726819/225953339-4fcc3c99-dda2-4529-ac2a-29c8293be323.png" height="55" /> <img src="https://user-images.githubusercontent.com/97726819/225953084-1d88325a-ad5f-49eb-aa67-f064c4b9f39c.png" height="55" /> <img src="https://user-images.githubusercontent.com/97726819/225952955-397e0f26-f01e-4b25-bd70-9f292a6f77c2.png" height="55" /> <img src="https://user-images.githubusercontent.com/97726819/225952682-a843827b-e870-429d-96d8-3b4fd45471cd.png" height="55" /> <img src="https://user-images.githubusercontent.com/97726819/225952831-1c0e36aa-4120-4635-ab4e-bf1bc685477b.png" height="55" /> <img src="https://user-images.githubusercontent.com/97726819/225953432-4b27653a-aa12-4fbf-897c-01349afa2ad0.png" height="55" /> </div> <br/> <p align="center"> AimStack offers enterprise support that's beyond core Aim. Contact via <a href="mailto:hello@aimstack.io">hello@aimstack.io</a> e-mail. </p>
<h3 align="center"> <a href="#-about"><b>About</b></a> &bull; <a href="#-demos"><b>Demos</b></a> &bull; <a href="#-ecosystem"><b>Ecosystem</b></a> &bull; <a href="#-quick-start"><b>Quick Start</b></a> &bull; <a href="https://github.com/aimhubio/aim/tree/main/examples"><b>Examples</b></a> &bull; <a href="https://aimstack.readthedocs.io/en/latest/"><b>Documentation</b></a> &bull; <a href="#-community"><b>Community</b></a> &bull; <a href="https://aimstack.io/blog"><b>Blog</b></a> </h3>

ℹī¸ About

Aim is an open-source, self-hosted ML experiment tracking tool designed to handle 10,000s of training runs.

Aim provides a performant and beautiful UI for exploring and comparing training runs. Additionally, its SDK enables programmatic access to tracked metadata — perfect for automations and Jupyter Notebook analysis.

<p align="center"> <strong>Aim's mission is to democratize AI dev tools đŸŽ¯ </strong> </p> <div align="center"> <img src="https://user-images.githubusercontent.com/13848158/226426018-f7c11c9b-78d9-4ee4-b292-df28b3e8eaa6.jpg" height="140" /> <img src="https://user-images.githubusercontent.com/13848158/226426005-f7e83923-0f92-44a4-88e4-1735a3d3e119.jpg" height="140" /> <img src="https://user-images.githubusercontent.com/13848158/226426015-4f1122d8-c96a-443f-8698-3db942b1972a.jpg" height="140" /> </div> </br> <div align="center"> <table> <tbody> <tr> <th>Log Metadata Across Your ML Pipeline 💾</th> <th>Visualize & Compare Metadata via UI 📊</th> </tr> <tr> <td> <ul> <li>ML experiments and any metadata tracking</li> <li>Integration with popular ML frameworks</li> <li>Easy migration from other experiment trackers</li> </ul> </td> <td> <ul> <li>Metadata visualization via Aim Explorers</li> <li>Grouping and aggregation</li> <li>Querying using Python expressions</li> </ul> </td> </tr> <tr> <th>Run ML Trainings Effectively ⚡</th> <th>Organize Your Experiments 🗂ī¸</th> </tr> <tr> <td> <ul> <li>System info and resource usage tracking</li> <li>Real-time alerting on training progress</li> <li>Logging and configurable notifications</li> </ul> </td> <td> <ul> <li>Detailed run information for easy debugging</li> <li>Centralized dashboard for holistic view</li> <li>Runs grouping with tags and experiments</li></ul> </td> </tr> </tbody> </table> </div>

đŸŽŦ Demos

Check out live Aim demos NOW to see it in action.

Machine translation experimentslightweight-GAN experiments
<a href="https://play.aimstack.io/nmt/metrics?grouping=O-JTdCJTIyY29sb3IlMjI6JTVCJTIycnVuLnBhcmFtcy5ocGFyYW1zLm1heF9rJTIyJTVELCUyMnN0cm9rZSUyMjolNUIlNUQsJTIyY2hhcnQlMjI6JTVCJTIybmFtZSUyMiwlMjJjb250ZXh0LnN1YnNldCUyMiU1RCwlMjJyZXZlcnNlTW9kZSUyMjolN0IlMjJjb2xvciUyMjpmYWxzZSwlMjJzdHJva2UlMjI6ZmFsc2UsJTIyY2hhcnQlMjI6ZmFsc2UlN0QsJTIyaXNBcHBsaWVkJTIyOiU3QiUyMmNvbG9yJTIyOnRydWUsJTIyc3Ryb2tlJTIyOnRydWUsJTIyY2hhcnQlMjI6dHJ1ZSU3RCwlMjJwZXJzaXN0ZW5jZSUyMjolN0IlMjJjb2xvciUyMjpmYWxzZSwlMjJzdHJva2UlMjI6ZmFsc2UlN0QsJTIyc2VlZCUyMjolN0IlMjJjb2xvciUyMjoxMCwlMjJzdHJva2UlMjI6MTAlN0QsJTIycGFsZXR0ZUluZGV4JTIyOjAlN0Q&chart=O-JTdCJTIyaGlnaGxpZ2h0TW9kZSUyMjoyLCUyMmlnbm9yZU91dGxpZXJzJTIyOnRydWUsJTIyem9vbSUyMjolN0IlMjJhY3RpdmUlMjI6ZmFsc2UsJTIybW9kZSUyMjowLCUyMmhpc3RvcnklMjI6JTVCJTVEJTdELCUyMmF4ZXNTY2FsZVR5cGUlMjI6JTdCJTIyeEF4aXMlMjI6JTIybGluZWFyJTIyLCUyMnlBeGlzJTIyOiUyMmxpbmVhciUyMiU3RCwlMjJheGVzU2NhbGVSYW5nZSUyMjolN0IlMjJ5QXhpcyUyMjolN0IlN0QsJTIyeEF4aXMlMjI6JTdCJTdEJTdELCUyMnNtb290aGluZyUyMjolN0IlMjJhbGdvcml0aG0lMjI6JTIyRVhQT05FTlRJQUxfTU9WSU5HX0FWRVJBR0UlMjIsJTIyZmFjdG9yJTIyOjAsJTIyY3VydmVJbnRlcnBvbGF0aW9uJTIyOiUyMmN1cnZlTGluZWFyJTIyLCUyMmlzQXBwbGllZCUyMjpmYWxzZSU3RCwlMjJhbGlnbm1lbnRDb25maWclMjI6JTdCJTIybWV0cmljJTIyOiUyMiUyMiwlMjJ0eXBlJTIyOiUyMnN0ZXAlMjIlN0QsJTIyZGVuc2l0eVR5cGUlMjI6NTAwLCUyMmFnZ3JlZ2F0aW9uQ29uZmlnJTIyOiU3QiUyMm1ldGhvZHMlMjI6JTdCJTIyYXJlYSUyMjoxLCUyMmxpbmUlMjI6MCU3RCwlMjJpc0FwcGxpZWQlMjI6dHJ1ZSwlMjJpc0VuYWJsZWQlMjI6dHJ1ZSU3RCwlMjJ0b29sdGlwJTIyOiU3QiUyMmFwcGVhcmFuY2UlMjI6JTIyYXV0byUyMiwlMjJkaXNwbGF5JTIyOnRydWUsJTIyc2VsZWN0ZWRGaWVsZHMlMjI6JTVCJTVELCUyMnNlbGVjdGVkUGFyYW1zJTIyOiU1QiU1RCU3RCwlMjJsZWdlbmRzJTIyOiU3QiUyMmRpc3BsYXklMjI6dHJ1ZSwlMjJtb2RlJTIyOiUyMnBpbm5lZCUyMiU3RCwlMjJmb2N1c2VkU3RhdGUlMjI6JTdCJTIyYWN0aXZlJTIyOnRydWUsJTIya2V5JTIyOiUyMk8tSlRkQ0pUSXljblZ1U0dGemFDVXlNam9sTWpKa1lUTmtNV1UzSlRJeUxDVXlNbTFsZEhKcFkwNWhiV1VsTWpJNkpUSXlZbVZ6ZEY5c2IzTnpKVEl5TENVeU1uUnlZV05sUTI5dWRHVjRkQ1V5TWpvbE4wSWxNakp6ZFdKelpYUWxNakk2SlRJeWRtRnNKVEl5SlRkRUpUZEUlMjIsJTIyeFZhbHVlJTIyOjIxLCUyMnlWYWx1ZSUyMjozLjQ3Mzk5OTk3NzEsJTIyY2hhcnRJbmRleCUyMjowLCUyMnZpc0lkJTIyOiUyMjAlMjIlN0QlN0Q&select=O-JTdCJTIyb3B0aW9ucyUyMjolNUIlN0IlMjJsYWJlbCUyMjolMjJiZXN0X2xvc3MlMjIsJTIyZ3JvdXAlMjI6JTIyYmVzdF9sb3NzJTIyLCUyMnR5cGUlMjI6JTIybWV0cmljcyUyMiwlMjJjb2xvciUyMjolMjIjN0E0Q0UwJTIyLCUyMmtleSUyMjolMjJPLUpUZENKVEl5YldWMGNtbGpUbUZ0WlNVeU1qb2xNakppWlhOMFgyeHZjM01sTWpJc0pUSXlZMjl1ZEdWNGRFNWhiV1VsTWpJNkpUSXlKVEl5SlRkRSUyMiwlMjJ2YWx1ZSUyMjolN0IlMjJvcHRpb25fbmFtZSUyMjolMjJiZXN0X2xvc3MlMjIsJTIyY29udGV4dCUyMjpudWxsJTdEJTdELCU3QiUyMmxhYmVsJTIyOiUyMmJsZXUlMjIsJTIyZ3JvdXAlMjI6JTIyYmxldSUyMiwlMjJ0eXBlJTIyOiUyMm1ldHJpY3MlMjIsJTIyY29sb3IlMjI6JTIyIzNFNzJFNyUyMiwlMjJrZXklMjI6JTIyTy1KVGRDSlRJeWJXVjBjbWxqVG1GdFpTVXlNam9sTWpKaWJHVjFKVEl5TENVeU1tTnZiblJsZUhST1lXMWxKVEl5T2lVeU1pVXlNaVUzUkElMjIsJTIydmFsdWUlMjI6JTdCJTIyb3B0aW9uX25hbWUlMjI6JTIyYmxldSUyMiwlMjJjb250ZXh0JTIyOm51bGwlN0QlN0QlNUQsJTIycXVlcnklMjI6JTIycnVuLmhwYXJhbXMubGVhcm5pbmdfcmF0ZSUyMCUzRSUyMDAuMDAwMDElMjIsJTIyYWR2YW5jZWRNb2RlJTIyOmZhbHNlLCUyMmFkdmFuY2VkUXVlcnklMjI6JTIycnVuLmhwYXJhbXMubGVhcm5pbmdfcmF0ZSUyMCUzRSUyMDAuMDAwMDElMjBhbmQlMjAoKG1ldHJpYy5uYW1lJTIwPT0lMjAlNUMlMjJibGV1JTVDJTIyKSUyMG9yJTIwKG1ldHJpYy5uYW1lJTIwPT0lMjAlNUMlMjJiZXN0X2xvc3MlNUMlMjIpJTIwb3IlMjAobWV0cmljLm5hbWUlMjA9PSUyMCU1QyUyMmJzeiU1QyUyMiUyMGFuZCUyMG1ldHJpYy5jb250ZXh0LnN1YnNldCUyMD09JTIwJTVDJTIydHJhaW4lNUMlMjIpKSUyMiU3RA"> <img src="https://user-images.githubusercontent.com/97726819/225964524-0051c2c7-8554-43ae-82b8-adcb77bcf1ba.png"> </a><a href="https://play.aimstack.io/image-generation/images?grouping=O-JTdCJTIycm93JTIyOiU1QiU1RCwlMjJyZXZlcnNlTW9kZSUyMjolN0IlMjJyb3clMjI6ZmFsc2UsJTIyZ3JvdXAlMjI6ZmFsc2UlN0QsJTIyaXNBcHBsaWVkJTIyOiU3QiUyMnJvdyUyMjp0cnVlLCUyMmdyb3VwJTIyOnRydWUlN0QsJTIyZ3JvdXAlMjI6JTVCJTIyaW5kZXglMjIsJTIyc3RlcCUyMiU1RCU3RA&select=O-JTdCJTIyb3B0aW9ucyUyMjolNUIlN0IlMjJsYWJlbCUyMjolMjJnZW5lcmF0ZWQlMjIsJTIyZ3JvdXAlMjI6JTIyZ2VuZXJhdGVkJTIyLCUyMmNvbG9yJTIyOiUyMiMzRTcyRTclMjIsJTIya2V5JTIyOiUyMk8tSlRkQ0pUSXliV1YwY21salRtRnRaU1V5TWpvbE1qSm5aVzVsY21GMFpXUWxNaklzSlRJeVkyOXVkR1Y0ZEU1aGJXVWxNakk2SlRJeUpUSXlKVGRFJTIyLCUyMnZhbHVlJTIyOiU3QiUyMm9wdGlvbl9uYW1lJTIyOiUyMmdlbmVyYXRlZCUyMiwlMjJjb250ZXh0JTIyOm51bGwlN0QlN0QlNUQsJTIycXVlcnklMjI6JTIyaW1hZ2VzLmNvbnRleHQuaW50ZXJwb2xhdGVkJTIwYW5kJTIwcnVuLmhwYXJhbXMubmFtZSUyMD09JTIwJTVDJTIybWV0ZmFjZXMlNUMlMjIlMjIsJTIyYWR2YW5jZWRNb2RlJTIyOmZhbHNlLCUyMmFkdmFuY2VkUXVlcnklMjI6JTIyaW1hZ2VzLmNvbnRleHQuaW50ZXJwb2xhdGVkJTIwYW5kJTIwcnVuLmhwYXJhbXMubmFtZSUyMD09JTIwJTVDJTIybWV0ZmFjZXMlNUMlMjIlMjIlN0Q&images=O-JTdCJTIyaW5kZXhEZW5zaXR5JTIyOjcsJTIycmVjb3JkRGVuc2l0eSUyMjoxNSwlMjJ0b29sdGlwJTIyOiU3QiUyMmFwcGVhcmFuY2UlMjI6JTIyYXV0byUyMiwlMjJkaXNwbGF5JTIyOnRydWUsJTIyc2VsZWN0ZWRGaWVsZHMlMjI6JTVCJTVELCUyMnNlbGVjdGVkUGFyYW1zJTIyOiU1QiU1RCU3RCwlMjJhZGRpdGlvbmFsUHJvcGVydGllcyUyMjolN0IlMjJhbGlnbm1lbnRUeXBlJTIyOiUyMkhlaWdodCUyMiwlMjJtZWRpYUl0ZW1TaXplJTIyOjIzLCUyMmltYWdlUmVuZGVyaW5nJTIyOiUyMnBpeGVsYXRlZCUyMiwlMjJzdGFja2luZyUyMjpmYWxzZSU3RCwlMjJmb2N1c2VkU3RhdGUlMjI6JTdCJTIyYWN0aXZlJTIyOmZhbHNlLCUyMmtleSUyMjpudWxsJTdELCUyMnNvcnRGaWVsZHMlMjI6JTVCJTVELCUyMnNvcnRGaWVsZHNEaWN0JTIyOiU3QiU3RCwlMjJpbnB1dHNWYWxpZGF0aW9ucyUyMjolN0IlMjJpbmRleERlbnNpdHklMjI6dHJ1ZSwlMjJyZWNvcmREZW5zaXR5JTIyOnRydWUlN0QsJTIyY2FsY1JhbmdlcyUyMjpmYWxzZSwlMjJzdGVwUmFuZ2UlMjI6JTVCMSw0Njk1NiU1RCwlMjJpbmRleFJhbmdlJTIyOiU1QjAsNyU1RCwlMjJyZWNvcmRTbGljZSUyMjolNUIzMTE0Miw0Njk1NyU1RCwlMjJpbmRleFNsaWNlJTIyOiU1QjAsOCU1RCwlMjJpbWFnZVByb3BlcnRpZXMlMjI6JTdCJTIyYWxpZ25tZW50VHlwZSUyMjolMjJIZWlnaHQlMjIsJTIyaW1hZ2VTaXplJTIyOjI1LCUyMmltYWdlUmVuZGVyaW5nJTIyOiUyMnBpeGVsYXRlZCUyMiU3RCU3RA"> <img src="https://user-images.githubusercontent.com/97726819/225948275-a41946ea-89f4-45f1-bce1-251c84dcddca.png"> </a>
Training logs of a neural translation model(from WMT'19 competition).Training logs of 'lightweight' GAN, proposed in ICLR 2021.
FastSpeech 2 experimentsSimple MNIST
<a href="https://play.aimstack.io/fastspeech2/runs/d9e89aa7875e44b2ba85612a/audios"> <img src="https://user-images.githubusercontent.com/97726819/225948457-567526da-a329-4c53-a9a7-98dfe392d4c4.png"> </a><a href="https://play.aimstack.io/digit-recognition/runs/7f083da898624a2c98e0f363/distributions"> <img src="https://user-images.githubusercontent.com/97726819/225948599-ff39c5b7-ae7d-4deb-8bc9-5eee1e189d89.png"> </a>
Training logs of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech".Simple MNIST training logs.

🌍 Ecosystem

Aim is not just an experiment tracker. It's a groundwork for an ecosystem. Check out the two most famous Aim-based tools.

aimlflowAim-spaCy
aimlflowAim-spaCy
Exploring MLflow experiments with a powerful UIan Aim-based spaCy experiment tracker

🏁 Quick start

Follow the steps below to get started with Aim.

1. Install Aim on your training environment

pip3 install aim

2. Integrate Aim with your code

from aim import Run

# Initialize a new run
run = Run()

# Log run parameters
run["hparams"] = {
    "learning_rate": 0.001,
    "batch_size": 32,
}

# Log metrics
for i in range(10):
    run.track(i, name='loss', step=i, context={ "subset":"train" })
    run.track(i, name='acc', step=i, context={ "subset":"train" })

See the full list of supported trackable objects(e.g. images, text, etc) here.

3. Run the training as usual and start Aim UI

aim up

Learn more

<details> <summary> <strong>Migrate from other tools</strong> </summary> </br>

Aim has built-in converters to easily migrate logs from other tools. These migrations cover the most common usage scenarios. In case of custom and complex scenarios you can use Aim SDK to implement your own conversion script.

</details> <details> <summary> <strong>Integrate Aim into an existing project</strong> </summary> </br>

Aim easily integrates with a wide range of ML frameworks, providing built-in callbacks for most of them.

</details> <details> <summary> <strong>Query runs programmatically via SDK</strong> </summary> </br>

Aim Python SDK empowers you to query and access any piece of tracked metadata with ease.

from aim import Repo

my_repo = Repo('/path/to/aim/repo')

query = "metric.name == 'loss'" # Example query

# Get collection of metrics
for run_metrics_collection in my_repo.query_metrics(query).iter_runs():
    for metric in run_metrics_collection:
        # Get run params
        params = metric.run[...]
        # Get metric values
        steps, metric_values = metric.values.sparse_numpy()
</details> <details> <summary> <strong>Set up a centralized tracking server</strong> </summary> </br>

Aim remote tracking server allows running experiments in a multi-host environment and collect tracked data in a centralized location.

See the docs on how to set up the remote server.

</details> <details> <summary> <strong>Deploy Aim on kubernetes</strong> </summary> </br> </details>

Read the full documentation on aimstack.readthedocs.io 📖

🆚 Comparisons to familiar tools

<details> <summary> <strong>TensorBoard vs Aim</strong> </summary> </br>

Training run comparison

Order of magnitude faster training run comparison with Aim

Scalability

Beloved TB visualizations to be added on Aim

</details> <details> <summary> <strong>MLflow vs Aim</strong> </summary> </br>

MLFlow is an end-to-end ML Lifecycle tool. Aim is focused on training tracking. The main differences of Aim and MLflow are around the UI scalability and run comparison features.

Aim and MLflow are a perfect match - check out the aimlflow - the tool that enables Aim superpowers on Mlflow.

Run comparison

UI Scalability

</details> <details> <summary> <strong>Weights and Biases vs Aim</strong> </summary> </br>

Hosted vs self-hosted

</details>

đŸ›Ŗī¸ Roadmap

Detailed milestones

The Aim product roadmap :sparkle:

High-level roadmap

The high-level features we are going to work on the next few months:

In progress

<details> <summary> <strong>Next-up</strong> </summary> </br>

Aim UI

SDK and Storage

Integrations

</details> <details> <summary> <strong>Done</strong> </summary> </br> </details>

đŸ‘Ĩ Community

Aim README badge

Add Aim badge to your README, if you've enjoyed using Aim in your work:

Aim

[![Aim](https://img.shields.io/badge/powered%20by-Aim-%231473E6)](https://github.com/aimhubio/aim)

Cite Aim in your papers

In case you've found Aim helpful in your research journey, we'd be thrilled if you could acknowledge Aim's contribution:

@software{Arakelyan_Aim_2020,
  author = {Arakelyan, Gor and Soghomonyan, Gevorg and {The Aim team}},
  doi = {10.5281/zenodo.6536395},
  license = {Apache-2.0},
  month = {6},
  title = {{Aim}},
  url = {https://github.com/aimhubio/aim},
  version = {3.9.3},
  year = {2020}
}

Contributing to Aim

Considering contibuting to Aim? To get started, please take a moment to read the CONTRIBUTING.md guide.

Join Aim contributors by submitting your first pull request. Happy coding! 😊

<a href="https://github.com/aimhubio/aim/graphs/contributors"> <img src="https://contrib.rocks/image?repo=aimhubio/aim" /> </a>

Made with contrib.rocks.

More questions?

  1. Read the docs
  2. Open a feature request or report a bug
  3. Join Discord community server