Home

Awesome

<p align="center"> <img src="assets/cover.png"> </p> <p align="center"> <img width="100px" height="20px" src="https://img.shields.io/badge/Ubuntu-20.04-orange?logo=Ubuntu&Ubuntu-20.04" alt="ubuntu" /> <img width="100px" height="20px" src="https://img.shields.io/badge/ROS-noetic-blue?logo=ROS&ROS=noetic" alt="ROS" /> </p>

ROS Motion Planning

Robot Motion planning is a computational problem that involves finding a sequence of valid configurations to move the robot from the source to the destination. Generally, it includes Path Searching and Trajectory Optimization.

This repository provides the implementation of common Motion Planning algorithms. The theory analysis can be found at motion-planning. Furthermore, we provide Python and MATLAB version.

Your stars, forks and PRs are welcome!

<p align="center"> <img src="assets/demo.gif"> </p>

Contents

<span id="0">0. Quick Start within 3 Minutes

Tested on ubuntu 20.04 LTS with ROS Noetic.

  1. Install ROS (Desktop-Full Install Recommended).

  2. Install git.

    sudo apt install git
    
  3. Install dependence

    • conan

      pip install conan==1.59.0
      conan remote add conancenter https://center.conan.io
      
    • Other dependence.

      sudo apt install python-is-python3 \
      ros-noetic-amcl \
      ros-noetic-base-local-planner \
      ros-noetic-map-server \
      ros-noetic-move-base \
      ros-noetic-navfn \
      libgoogle-glog-dev
      
  4. Clone the reposity.

    git clone https://github.com/ai-winter/ros_motion_planning.git
    
  5. Compile the code.

    NOTE: Please refer to #48 if you meet libignition dependency error.

    cd scripts/
    ./build.sh  # you may need to install catkin-tools using: sudo apt install python-catkin-tools
    
  6. Execute the code.

    cd scripts/
    ./main.sh
    

    NOTE: Modifying launch files may not have any effect, because they are regenerated by a Python script based on src/user_config/user_config.yaml when you run main.sh. Therefore, you should modify configurations in user_config.yaml instead of launch files.

  7. Use 2D Nav Goal in RViz to select the goal.

  8. Moving!

  9. You can use the other script to shutdown them rapidly.

    cd scripts/
    ./killpro.sh
    
  10. Multi agents

    # 1. Replace with user_config_multi.yaml in main.sh
    # 2. Wait for initialization
    # 3. Publish goals
    rosrun sim_env goal_publisher.py
    

1. <span id="1">Document

The overall file structure is shown below.

ros_motion_planner
├── 3rd
├── docs
├── docker
├── assets
├── scripts
└── src
    ├── core
    │   ├── common
    │   ├── path_planner
    │   └── controller
    ├── sim_env             # simulation environment
    │   ├── config
    │   ├── launch
    │   ├── maps
    │   ├── meshes
    │   ├── models
    │   ├── rviz
    │   ├── urdf
    │   └── worlds
    ├── plugins
    │   ├── dynamic_rviz_config
    │   ├── dynamic_xml_config
    │   ├── gazebo_plugins
    │   ├── map_plugins
    │   └── rviz_plugins
    └── user_config         # user configure file

To better understand the project code, detailed interface documentation can be generated using the doxygen tool. First install doxygen and graphviz.

sudo apt-get install doxygen graphviz

Then start the doxygen and you can find the documentation in ./docs/html/index.html.

doxygen

For more information about the project usage, please refer to the following table.

IndexDocumentIntroduction
0StatusIntroduce how to dynamically configure parameters such as robot types, planning algorithms, environmental obstacles, etc.
1StatusIntroduce how to use Docker to conveniently build the project environment and simulate it.
2StatusIntroduce how to build a real robot application based on the algorithms provided in this repository.
3StatusImportant updates.

02. <span id="2">Tool Chains

For the efficient operation of the motion planning system, we provide a series of user-friendly simulation tools that allow for on-demand selection of these lightweight repositories.

Tool VersionIntroduction
StatusThis is a Gazebo plugin for pedestians with collision property. You can construct a dynamic environment in ROS easily using plugin.
StatusThis repository provides a ROS-based visualization Rviz plugins for path planning and curve generation algorithms.

<span id="3">03. Version

Global Planner

PlannerVersionAnimationPapers
GBFSStatusgbfs_ros.gif-
DijkstraStatusdijkstra_ros.gif-
A*Statusa_star_ros.gifA Formal Basis for the heuristic Determination of Minimum Cost Paths
JPSStatusjps_ros.gifOnline Graph Pruning for Pathfinding On Grid Maps
D*Statusd_star_ros.gifOptimal and Efficient Path Planning for Partially-Known Environments
LPA*Statuslpa_star_ros.gifLifelong Planning A*
D* LiteStatusd_star_lite_ros.gifD* Lite
VoronoiStatusvoronoi_ros.gif-
Theta*Statustheta_star_ros.gifTheta*: Any-Angle Path Planning on Grids, Any-angle path planning on non-uniform costmaps
Lazy Theta*Statuslazy_theta_star_ros.gifLazy Theta*: Any-Angle Path Planning and Path Length Analysis in 3D
S-Theta*Statuss_theta_star_ros.gifS-Theta*: low steering path-planning algorithm
Hybrid A*Statushybrid_astar_ros.gifPractical search techniques in path planning for autonomous driving
RRTStatusrrt_ros.gifRapidly-Exploring Random Trees: A New Tool for Path Planning
RRT*Statusrrt_star_ros.gifSampling-based algorithms for optimal motion planning
Informed RRTStatusinformed_rrt_ros.gifOptimal Sampling-based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal heuristic
RRT-ConnectStatusrrt_connect_ros.gifRRT-Connect: An Efficient Approach to Single-Query Path Planning
ACOStatusaco_ros.gifAnt Colony Optimization: A New Meta-Heuristic
GAStatusga_ros.gifAdaptation in Natural and Artificial Systems
PSOStatuspso_ros.gifParticle Swarm Optimization

Local Planner

PlannerVersionAnimationPaper
PIDStatuspid_ros.gifMapping Single-Integrator Dynamics to Unicycle Control Commands p. 14
LQRStatuslqr_ros.gif-
DWAStatusdwa_ros.gifThe Dynamic Window Approach to Collision Avoidance
APFStatusapf_ros.gifReal-time obstacle avoidance for manipulators and mobile robots
RPPStatusrpp_ros.gifRegulated Pure Pursuit for Robot Path Tracking
TEBStatusStatus
MPCStatusmpc_ros.gif-
LatticeStatusStatus

Curve Generation

PlannerVersionAnimationPaper
PolynomiaStatuspolynomial_curve_python.gif-
BezierStatusbezier_curve_python.png-
Cubic SplineStatuscubic_spline_python.png-
BSplineStatusbspline_curve_python.png-
DubinsStatusdubins_curve_python.pngOn curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents
Reeds-SheppStatusreeds_shepp_python.pngOptimal paths for a car that goes both forwards and backwards

<span id="4">04. Acknowledgments

<span id="5">05. License

The source code is released under GPLv3 license.

<span id="6">06. Maintenance

Feel free to contact us if you have any question.