Home

Awesome

Skimpy

A light weight tool for creating summary statistics from dataframes. png

PyPI Status Python Version License Read the documentation at https://aeturrell.github.io/skimpy/ Tests Codecov pre-commit Black Google Colab Downloads Source

Linux macOS Windows

skimpy is a light weight tool that provides summary statistics about variables in pandas or Polars data frames within the console or your interactive Python window.

Think of it as a super-charged version of pandas' df.describe(). You can find the documentation here.

Quickstart

skim a pandas or polars dataframe and produce summary statistics within the console using:

from skimpy import skim

skim(df)

where df is a pandas or polars dataframe.

If you need to a dataset to try skimpy out on, you can use the built-in test Pandas data frame:

from skimpy import generate_test_data, skim

df = generate_test_data()
skim(df)
<pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace">╭──────────────────────────────────────────────── skimpy summary ─────────────────────────────────────────────────╮ │ <span style="font-style: italic"> Data Summary </span> <span style="font-style: italic"> Data Types </span> <span style="font-style: italic"> Categories </span> │ │ ┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓ ┏━━━━━━━━━━━━━┳━━━━━━━┓ ┏━━━━━━━━━━━━━━━━━━━━━━━┓ │ │ ┃<span style="color: #008080; text-decoration-color: #008080; font-weight: bold"> dataframe </span>┃<span style="color: #008080; text-decoration-color: #008080; font-weight: bold"> Values </span>┃ ┃<span style="color: #008080; text-decoration-color: #008080; font-weight: bold"> Column Type </span>┃<span style="color: #008080; text-decoration-color: #008080; font-weight: bold"> Count </span>┃ ┃<span style="color: #008080; text-decoration-color: #008080; font-weight: bold"> Categorical Variables </span>┃ │ │ ┡━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩ ┡━━━━━━━━━━━━━╇━━━━━━━┩ ┡━━━━━━━━━━━━━━━━━━━━━━━┩ │ │ │ Number of rows │ 1000 │ │ float64 │ 3 │ │ class │ │ │ │ Number of columns │ 13 │ │ category │ 2 │ │ location │ │ │ └───────────────────┴────────┘ │ datetime64 │ 2 │ └───────────────────────┘ │ │ │ object │ 2 │ │ │ │ int64 │ 1 │ │ │ │ bool │ 1 │ │ │ │ string │ 1 │ │ │ │ timedelta64 │ 1 │ │ │ └─────────────┴───────┘ │ │ <span style="font-style: italic"> number </span> │ │ ┏━━━━━━━━━━━━━━┳━━━━━┳━━━━━━┳━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┳━━━━━━━━┓ │ │ ┃<span style="font-weight: bold"> column_name </span>┃<span style="font-weight: bold"> NA </span>┃<span style="font-weight: bold"> NA % </span>┃<span style="font-weight: bold"> mean </span>┃<span style="font-weight: bold"> sd </span>┃<span style="font-weight: bold"> p0 </span>┃<span style="font-weight: bold"> p25 </span>┃<span style="font-weight: bold"> p50 </span>┃<span style="font-weight: bold"> p75 </span>┃<span style="font-weight: bold"> p100 </span>┃<span style="font-weight: bold"> hist </span>┃ │ │ ┡━━━━━━━━━━━━━━╇━━━━━╇━━━━━━╇━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━╇━━━━━━━━┩ │ │ │ <span style="color: #af87ff; text-decoration-color: #af87ff">length </span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0.5016</span> │ <span style="color: #008080; text-decoration-color: #008080">0.3597</span> │ <span style="color: #008080; text-decoration-color: #008080">1.573e-06</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0.134</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0.4976</span> │ <span style="color: #008080; text-decoration-color: #008080">0.8602</span> │ <span style="color: #008080; text-decoration-color: #008080"> 1</span> │ <span style="color: #008000; text-decoration-color: #008000">▇▃▃▃▅▇</span> │ │ │ │ <span style="color: #af87ff; text-decoration-color: #af87ff">width </span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #008080; text-decoration-color: #008080"> 2.037</span> │ <span style="color: #008080; text-decoration-color: #008080"> 1.929</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0.002057</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0.603</span> │ <span style="color: #008080; text-decoration-color: #008080"> 1.468</span> │ <span style="color: #008080; text-decoration-color: #008080"> 2.953</span> │ <span style="color: #008080; text-decoration-color: #008080">13.91</span> │ <span style="color: #008000; text-decoration-color: #008000"> ▇▃▁ </span> │ │ │ │ <span style="color: #af87ff; text-decoration-color: #af87ff">depth </span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #008080; text-decoration-color: #008080"> 10.02</span> │ <span style="color: #008080; text-decoration-color: #008080"> 3.208</span> │ <span style="color: #008080; text-decoration-color: #008080"> 2</span> │ <span style="color: #008080; text-decoration-color: #008080"> 8</span> │ <span style="color: #008080; text-decoration-color: #008080"> 10</span> │ <span style="color: #008080; text-decoration-color: #008080"> 12</span> │ <span style="color: #008080; text-decoration-color: #008080"> 20</span> │ <span style="color: #008000; text-decoration-color: #008000">▁▃▇▆▃▁</span> │ │ │ │ <span style="color: #af87ff; text-decoration-color: #af87ff">rnd </span> │ <span style="color: #008080; text-decoration-color: #008080">118</span> │ <span style="color: #008080; text-decoration-color: #008080">11.8</span> │ <span style="color: #008080; text-decoration-color: #008080">-0.01977</span> │ <span style="color: #008080; text-decoration-color: #008080"> 1.002</span> │ <span style="color: #008080; text-decoration-color: #008080"> -2.809</span> │ <span style="color: #008080; text-decoration-color: #008080">-0.7355</span> │ <span style="color: #008080; text-decoration-color: #008080">-0.0007736</span> │ <span style="color: #008080; text-decoration-color: #008080">0.6639</span> │ <span style="color: #008080; text-decoration-color: #008080">3.717</span> │ <span style="color: #008000; text-decoration-color: #008000">▁▅▇▅▁ </span> │ │ │ └──────────────┴─────┴──────┴──────────┴────────┴───────────┴─────────┴────────────┴────────┴───────┴────────┘ │ │ <span style="font-style: italic"> category </span> │ │ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┓ │ │ ┃<span style="font-weight: bold"> column_name </span>┃<span style="font-weight: bold"> NA </span>┃<span style="font-weight: bold"> NA % </span>┃<span style="font-weight: bold"> ordered </span>┃<span style="font-weight: bold"> unique </span>┃ │ │ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━┩ │ │ │ <span style="color: #af87ff; text-decoration-color: #af87ff">class </span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #00d7ff; text-decoration-color: #00d7ff">False </span> │ <span style="color: #008080; text-decoration-color: #008080"> 2</span> │ │ │ │ <span style="color: #af87ff; text-decoration-color: #af87ff">location </span> │ <span style="color: #008080; text-decoration-color: #008080"> 1</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0.1</span> │ <span style="color: #00d7ff; text-decoration-color: #00d7ff">False </span> │ <span style="color: #008080; text-decoration-color: #008080"> 5</span> │ │ │ └──────────────────────────────────┴───────────┴────────────────┴───────────────────────┴────────────────────┘ │ │ <span style="font-style: italic"> bool </span> │ │ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓ │ │ ┃<span style="font-weight: bold"> column_name </span>┃<span style="font-weight: bold"> true </span>┃<span style="font-weight: bold"> true rate </span>┃<span style="font-weight: bold"> hist </span>┃ │ │ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩ │ │ │ <span style="color: #af87ff; text-decoration-color: #af87ff">booly_col </span> │ <span style="color: #008080; text-decoration-color: #008080"> 516</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0.52</span> │ <span style="color: #008000; text-decoration-color: #008000"> ▇ ▇ </span> │ │ │ └────────────────────────────────────┴─────────────────┴───────────────────────────────┴─────────────────────┘ │ │ <span style="font-style: italic"> datetime </span> │ │ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓ │ │ ┃<span style="font-weight: bold"> column_name </span>┃<span style="font-weight: bold"> NA </span>┃<span style="font-weight: bold"> NA % </span>┃<span style="font-weight: bold"> first </span>┃<span style="font-weight: bold"> last </span>┃<span style="font-weight: bold"> frequency </span>┃ │ │ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩ │ │ │ <span style="color: #af87ff; text-decoration-color: #af87ff">datetime </span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #800000; text-decoration-color: #800000"> 2018-01-31 </span> │ <span style="color: #800000; text-decoration-color: #800000"> 2101-04-30 </span> │ <span style="color: #af87ff; text-decoration-color: #af87ff">ME </span> │ │ │ │ <span style="color: #af87ff; text-decoration-color: #af87ff">datetime_no_freq </span> │ <span style="color: #008080; text-decoration-color: #008080"> 3</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0.3</span> │ <span style="color: #800000; text-decoration-color: #800000"> 1992-01-05 </span> │ <span style="color: #800000; text-decoration-color: #800000"> 2023-03-04 </span> │ <span style="color: #af87ff; text-decoration-color: #af87ff">None </span> │ │ │ └──────────────────────────────┴───────┴──────────┴────────────────────┴───────────────────┴─────────────────┘ │ │ <span style="font-style: italic"> &lt;class 'datetime.date'&gt; </span> │ │ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┓ │ │ ┃<span style="font-weight: bold"> column_name </span>┃<span style="font-weight: bold"> NA </span>┃<span style="font-weight: bold"> NA % </span>┃<span style="font-weight: bold"> first </span>┃<span style="font-weight: bold"> last </span>┃<span style="font-weight: bold"> frequency </span>┃ │ │ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━┩ │ │ │ <span style="color: #af87ff; text-decoration-color: #af87ff">datetime.date </span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #af87ff; text-decoration-color: #af87ff">2018-01-31 </span> │ <span style="color: #af87ff; text-decoration-color: #af87ff">2101-04-30 </span> │ <span style="color: #af87ff; text-decoration-color: #af87ff">ME </span> │ │ │ │ <span style="color: #af87ff; text-decoration-color: #af87ff">datetime.date_no_freq </span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0</span> │ <span style="color: #af87ff; text-decoration-color: #af87ff">1992-01-05 </span> │ <span style="color: #af87ff; text-decoration-color: #af87ff">2023-03-04 </span> │ <span style="color: #af87ff; text-decoration-color: #af87ff">None </span> │ │ │ └──────────────────────────────────┴───────┴──────────┴──────────────────┴──────────────────┴────────────────┘ │ │ <span style="font-style: italic"> timedelta64 </span> │ │ ┏━━━━━━━━━━━━━━━━━━┳━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┓ │ │ ┃<span style="font-weight: bold"> column_name </span>┃<span style="font-weight: bold"> NA </span>┃<span style="font-weight: bold"> NA % </span>┃<span style="font-weight: bold"> mean </span>┃<span style="font-weight: bold"> median </span>┃<span style="font-weight: bold"> max </span>┃ │ │ ┡━━━━━━━━━━━━━━━━━━╇━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━┩ │ │ │ <span style="color: #af87ff; text-decoration-color: #af87ff">time diff </span> │ <span style="color: #008080; text-decoration-color: #008080"> 5</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0.5</span> │ <span style="color: #008080; text-decoration-color: #008080"> 8 days 00:05:47</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0 days 00:00:00</span> │ <span style="color: #008080; text-decoration-color: #008080"> 26 days 00:00:00</span> │ │ │ └──────────────────┴──────┴─────────┴───────────────────────┴───────────────────────┴────────────────────────┘ │ │ <span style="font-style: italic"> string </span> │ │ ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┓ │ │ ┃<span style="font-weight: bold"> column_name </span>┃<span style="font-weight: bold"> NA </span>┃<span style="font-weight: bold"> NA % </span>┃<span style="font-weight: bold"> words per row </span>┃<span style="font-weight: bold"> total words </span>┃ │ │ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━┩ │ │ │ <span style="color: #af87ff; text-decoration-color: #af87ff">text </span> │ <span style="color: #008080; text-decoration-color: #008080"> 6</span> │ <span style="color: #008080; text-decoration-color: #008080"> 0.6</span> │ <span style="color: #008080; text-decoration-color: #008080"> 5.8</span> │ <span style="color: #008080; text-decoration-color: #008080"> 5761</span> │ │ │ └───────────────────────────┴─────────┴────────────┴──────────────────────────────┴──────────────────────────┘ │ ╰────────────────────────────────────────────────────── End ──────────────────────────────────────────────────────╯ </pre>

It is recommended that you set your datatypes before using skimpy (for example converting any text columns to pandas string datatype), as this will produce richer statistical summaries. However, the skim() function will try and guess what the datatypes of your columns are.

Requirements

You can find a full list of requirements in the pyproject.toml file.

You can try this package out right now in your browser using this Google Colab notebook (requires a Google account). Note that the Google Colab notebook uses the latest package released on PyPI (rather than the development release).

Installation

You can install the latest release of skimpy via pip from PyPI:

$ pip install skimpy

To install the development version from git, use:

$ pip install git+https://github.com/aeturrell/skimpy.git

For development, see contributing.

License

Distributed under the terms of the MIT license, skimpy is free and open source software.

Issues

If you encounter any problems, please file an issue along with a detailed description.

Credits

This project was generated from @cjolowicz's Hypermodern Python Cookiecutter template.

skimpy was inspired by the R package skimr and by exploratory Python packages including ydata_profiling and dataprep, from which the clean_columns function comes.

This package would not have been possible without the Rich package.

The package is built with poetry, while the documentation is built with Quarto and Quartodoc (a Python package). Tests are run with nox.

Using skimpy in your paper? Let us know by raising an issue beginning with "citation" and we'll add it to this page.