Home

Awesome

BEPH

Official repo for XXXXX, which is based on BEiTv2:

*It is worth noting that the BEiT implementation we use comes from mmselfsup[https://github.com/open-mmlab/mmselfsup].

<img src="https://raw.githubusercontent.com/Zhcyoung/Image_hosting_service/main/overflow2.jpg" alt="overflow2" style="zoom: 50%;" />

Key Features

This is the repo for the paper XXXXXXX led by ZhaochangYang and XXXXX:

Install environment

Install mmselfsup

conda create -n BEPH python=3.9 -y
conda activate BEPH
conda install pytorch torchvision -c pytorch
git clone https://github.com/Zhcyoung/BEPH_new.git
pip install -U openmim
mim install mmengine
mim install 'mmcv>=2.0.0'
cd mmclassification && mim install -e .
cd .. && cd mmselfsup && mim install -e .

Extract backbone weights to apply to downstream tasks, or download the weight directly [],[]:

import torch

ck = torch.load("./BEPH_weight.pth", map_location=torch.device('cpu'))
outPath = "./BEPH_backbone.pth"
output_dict = dict(state_dict=dict(), author='Yzc')
has_backbone = False
for key, value in ck['state_dict'].items():
    if key.startswith('backbone'):
        output_dict['state_dict'][key] = value
        has_backbone = True

if not has_backbone:
    raise Exception('Cannot find a backbone module in the checkpoint.')
torch.save(output_dict, outPath)

Downloading + Preprocessing + Organizing TCGA Data

We downloaded diagnostic whole-slide images (WSIs) for 32 cancer types using the GDC Data Transfer Tool, and then we locally sample image regions of 1024×224×224 (approximately 1024 images) from each pathological image, ensuring that the sampled region has a tissue proportion greater than 75%. These sampled image regions are then cropped into 224×224 tiles at 40X magnification, while maintaining a tissue proportion of 75%.

<img src="https://raw.githubusercontent.com/Zhcyoung/Image_hosting_service/main/%E9%87%87%E6%A0%B72.png" alt="采样2" style="zoom: 1%;" />

For pre-training,each cancer type is organized as its own folder in TCGA_ROOT_DIR, which additionally contains the following subfolders:

TCGA_ROOT_DIR/
    └──tcga_acc/
        ├── ...
    └──tcga_sarc/
    	├── TCGA-3B-A9HI-01Z-00-DX1
    		├──0_0.png
    		├──0_1.png
    		├──0_2.png
    		├──...
    	├── TCGA-DX-A23V-01Z-00-DX1
    		├── ...
    		├── ...
    		├── ...
    	├── ...

And generate a pre-train.txt containing the filename:

./tcga_hnsc/TCGA-CV-A6JZ-01Z-00-DX1/6_30.png
./tcga_dlbc/TCGA-GS-A9TY-01Z-00-DX1/19_15.png 
./tcga_gbm/TCGA-06-0171-01Z-00-DX1/27_17.png 
... ...

And then modify the pre-train config file:beitv2_vit.py

train_dataloader = dict(
    batch_size=256,
    collate_fn=dict(type='default_collate'),
    dataset=dict(
        ann_file= 'pre-train.txt' , ###Change to your pre-training file
        data_prefix=dict(img_path='Cancer_patches/'),
        data_root=data_root,
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                brightness=0.4,
                contrast=0.4,
                hue=0.0,
                saturation=0.4,
                type='ColorJitter'),
            ... ...,
            )

Pre-training Command:

bash tools/slurm_train_4gpu.sh a100 BEPH  ./TrainConfigs/beitv2_vit.py

Fine-tuning with BEPH weights

To fine tune BEPH on your own data, follow these steps:

  1. Download the BEPH pre-trained weights, Google Drive, baidu

Patch level tasks

Start fine-tuning (use BreakHis as example). A fine-tuned checkpoint will be saved during training.

Organise your data into this directory structure:

├── data folder
    ├──images
    ├──meta
    	├──train.txt
    	├──val.txt

Train.txt /val.txt

./images/SOB_M_DC-14-16716-100-022.png 1
./images/SOB_B_TA-14-16184CD-100-003.png 0
./images/SOB_B_TA-14-16184CD-100-031.png 0
./images/SOB_M_DC-14-14946-100-025.png 1
./images/SOB_M_LC-14-12204-100-037.png 1
... ...

Train Command:

bash ./tools/benchmarks/classification/mim_dist_train.sh  ./FineTuning/beit.py  ./BEPH_backbone.pth

For evaluation (download data and model checkpoints here; change the path below):

bash ./tools/benchmarks/classification/mim_dist_test.sh   ./FineTuning/beit.py ./work_dir/epoch_x.pth

wsi level tasks:

Following pretraining and pre-extracting instance-level features using ViT-base, we use the publicly-available CLAM scaffold code as well as several of the current weakly-supervised baselines for running 10-fold monte carlo cross-validation experiments.

Directory tree:

DATA_DIRECTORY/
	├── slide_1.svs
	├── slide_2.svs
	└── ...
PATCH_DIRECTORY/
	├── masks
		├── slide_1.jpg
		└── ...
	├── patches
		├── slide_1.h5
		└── ...
	├── stitches
		├── slide_1.jpg
		└── ...
	├── process_list_autogen.csv
	└── Step_2.csv
FEATURES_DIRECTORY/
	├── h5_files
		├── slide_1.h5
		└── ...
	└── pt_files
		├── slide_1.pt
		└── ...
DATASET_CSV/
	└──label.csv
SPLITS/
	├── splits_0.csv
	└── ...
RESULTS/
	├── tcga_brca_subtype
		├── s_0_checkpoint.pt
		├── splits_0.csv
		├── ...
		└──	summary.csv
	└── ...

Feature extraction:

python create_patches_fp.py \
--source ./DATA_DIRECTORY/  \
--save_dir ./PATCH_DIRECTORY/patch_splits \
--patch_size 224 \
--seg \
--patch \
--stitch
# --preset tcga.csv \
import os 
import pandas as pd 

df = pd.read_csv('./PATCH_DIRECTORY/process_list_autogen.csv') # This csv is generated in the first step
ids1 = [i[:-4] for i in df.slide_id]
ids2 = [i[:-3] for i in os.listdir('./PATCH_DIRECTORY/patch_splits/patches/')]
df['slide_id'] = ids1
ids = df['slide_id'].isin(ids2)
sum(ids)
df.loc[ids].to_csv('./PATCH_DIRECTORY/patch_splits/Step_2.csv',index=False)


Get feature: histopathological image DINO feature

# ImageNet ResNet-50 feature: extract_features_fp.py
#histopathological image DINO feature: extract_features_dino.py
#BEPH feature: extract_features_BEPH.py

python extract_features_BEPH.py \ 
--data_h5_dir ./FEATURE_DIRECTORY/patch_splits/ \
--data_slide_dir ./DATA_DIRECTORY/ \
--csv_path ./PATCH_DIRECTORY/patch_splits/Step_2.csv \
--feat_dir ./FEATURES_DIRECTORY \
--batch_size 2000 \
--slide_ext .svs



Filter out the slides that cannot extract features:

df = pd.read_csv(wsi_path[:-3]+'dataset_csv/label.csv')
df = df[['case_id','slide_id','slide_name','oncotree_code']]
ids1 = [i for i in df.slide_name]
ids2 = [i[:-3] for i in os.listdir(wsi_path[:-3]+'test_time_FEATURES_DIRECTORY/pt_files')]
ids = df['slide_name'].isin(ids2)
df = df.loc[ids]
df.columns = ['case_id','slide_id','slide_name','label']
df.to_csv(wsi_path[:-3]+'DATASET_CSV/datasets.csv',index=False)

Train Command (Take the clam_sb model for breast cancer subtypes classification as an example):

%run CLAM_SB_BEPH.py \
--data_root_dir   DATA_DIRECTORY/ \
--model_type   clam_sb \
--task tcga_brca_subtype \
--splits  SPLITS/ \
--lr 2e-4 \
--seed 123 \
--feature_path  FEATURES_DIRECTORY/
--csv_path DATASET_CSV/datasets.csv \
--k 10 \
--k_start 0 \
--results_dir  RESULTS/tcga_brca_subtype


[ "python",   "./CLAM_Feature/CLAM_SB_BEPH.py",  "--data_root_dir",wsi_path[:-3]+"test_time_FEATURES_DIRECTORY",  "--model_type", "clam_sb","--task","Fine_Tuning","--k_start","0","--k",kstart,"--splits",wsi_path[:-3]+ "splits", "--lr",  "2e-4",  "--seed","47","--csv_path",wsi_path[:-3]+ "/dataset_csv/datasets.csv","--results_dir",wsi_path[:-3]+ str(jobid).split('_')[1]+"/test_result","--early_stopping"]

For evaluation:

python eval.py --data_root_dir  DATA_DIRECTORY/ \
--model_type clam_sb \
--task tcga_brca_subtype \
--splits  SPLITS/ \
--feature_path FEATURES_DIRECTORY/ \
--weights_path ../weights/tcga_brca_subtype/ \
--csv_path DATASET_CSV/label.csv \
--k 10 \
--k_start 0 \
--results_dir RESULTS/tcga_brca_subtype

Analagously, we also extend the CLAM scaffold code for survival prediction, and make available:

Train Command :

python ./survival/CLAM_survival_BEPH.py --data_root_dir DATA_DIRECTORY/ \
--model_type clam_sb \
--task tcga_crc_subtype \
--max_epoch 20 \
--k 5 \
--k_start 0 \
--lr  2e-4 \
--seed 123 \
--results_dir ./RESULTS/tcga_crc_survival\
--early_stopping
# --pretrain_4k vit4k_xs_dino
# 1e-4

For evaluation:

python ./survival/eval_survival.py --data_root_dir DATA_DIRECTORY/ \
--model_type clam_sb \
--task tcga_crc_subtype \
--results_dir ./RESULTS/tcga_crc_survival/test