Awesome
RGBD-Tracking-Results-Datasets-and-Methods
An investigation for RGBD tracking. Hopefully, it can help other researchers become familiar with multi-modal tracking as soon as possible. This repository is started on 27/12/2023, and will keep on updating.
This repository will give a detail investigation of the RGBD tracking community, including the Datasets, Results, and the Methods.
- Datasets
- Results
- Methods
- ...
🫵Find our survey work at another repo
Survey Papers
- RGBD---- A Survey of RGB-Depth Object Tracking. Zhou Ou, Ge Ying, Dawei Zhang*, Zhonglong Zheng. Journal of Computer-Aided Design & Computer Graphics 2024. [Paper]
- RGBD/T ---- Multi-modal visual tracking: Review and experimental comparison. Zhang, Pengyu, Dong Wang*, and Huchuan Lu. Computational Visual Media 2024. [Paper]
- RGBD---- Rgbd object tracking: An in-depth review. Jinyu Yang, Zhe Li, Song Yan, Feng Zheng*, Aleš Leonardis, Joni-Kristian Kämäräinen, Ling Shao. Arxiv 2022. [Paper]
Datasets
Real Data
Dataset | Publish | GitHub | Introduction |
---|---|---|---|
D2CUBE | CVRP'2023 | D2CUBE | Resource-Efficient RGBD Aerial Tracking |
ARKittrack | CVPR'2023 | ARKittrack | ARKitTrack: A New Diverse Dataset for Tracking Using Mobile RGB-D Data |
RGBD1K | AAAI'2023 | RGBD1K | RGBD1K: A Large-Scale Dataset and Benchmark for RGB-D Object Tracking |
VOT-RGBD2022 | VOT Community | VOT-RGBD2022 | The Tenth Visual Object Tracking VOT2022 Challenge Results |
DepthTrack | ICCV'2021 | DepthTrack | DepthTrack: Unveiling the Power of RGBD Tracking |
CDTB | ICCV'2019 | CDTB | CDTB: A Color and Depth Visual Object Tracking Dataset and Benchmark |
STC | ICCV'2019 | STC code:TZYD | Robust Fusion of Color and Depth Data for RGB-D Target Tracking Using Adaptive Range-Invariant Depth Models and Spatio-Temporal Consistency Constraints |
PTB | ICCV'2013 | PTB | Tracking Revisited using RGBD Camera: Unified Benchmark and Baselines |
BoBoT | - | BoBoT | BoBot - Bonn benchmark on tracking |
Results
<table> <tr> <th colspan="1"></th> <th colspan="1"></th> <th colspan="1"></th> <th colspan="3">CDTB</th> <th colspan="3">DepthTrack</th> <th colspan="3">VOT-RGBD2022</th> </tr> <tr> <td> Methods</td> <td>Venue</td> <td>Speed</td> <td> Pr</td> <td> Re</td> <td> F-score</td> <td> Pr</td> <td> Re</td> <td> F-score</td> <td> A</td> <td> R</td> <td> EAO</td> </tr> <tr> <td> EMTrack</td> <td>TCSVT'2024</td> <td>29.1/CPU</td> <td></td> <td></td> <td></td> <td>58.0</td> <td>58.5</td> <td>58.3</td> <td> 80.6</td> <td> 84.4</td> <td>69.7</td> </tr> <tr> <td> UBPT</td> <td>IEEE Sensor Journal'2024</td> <td></td> <td></td> <td></td> <td></td> <td>61.5</td> <td>62.0</td> <td>61.7</td> <td> 82.0</td> <td> 87.1</td> <td>72.1</td> </tr> <tr> <td> DepthRefiner</td> <td>ICME'2024</td> <td>32/A100</td> <td>66.9</td> <td>68.4</td> <td>67.7</td> <td>51.3</td> <td>50.7</td> <td>51.0</td> <td> 79.7</td> <td> 73.3</td> <td>60.3</td> </tr> <tr> <td> TABBTrack</td> <td>PR'2024</td> <td>27/RTX3090</td> <td>72.1</td> <td>72.2</td> <td>72.1</td> <td>62.2</td> <td>61.5</td> <td>61.8</td> <td> 82.1</td> <td> 87.4</td> <td>72.2</td> </tr> <tr> <td> AMATrack</td> <td>TIM'2024</td> <td>73/RTX3070</td> <td>73.2</td> <td>78.6</td> <td>75.8</td> <td>62.9</td> <td>60.7</td> <td>61.8</td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> MixRGBX</td> <td>Neurocomputing'2024</td> <td></td> <td>72.8</td> <td>81.6</td> <td>76.9</td> <td>59.3</td> <td>60.9</td> <td>60.1</td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> OneTrack</td> <td>CVPR'2024</td> <td></td> <td> </td> <td> </td> <td> </td> <td> 60.7</td> <td> 60.4</td> <td> 60.9</td> <td> 87.2</td> <td> 81.9</td> <td> 72.7</td> </tr> <tr> <td> UnTrack</td> <td>CVPR'2024</td> <td></td> <td> </td> <td> </td> <td> </td> <td> 61.3</td> <td> 61.0</td> <td> 61.2</td> <td> 87.1</td> <td> 81.5</td> <td> 72.1</td> </tr> <tr> <td> SDSTrack</td> <td>CVPR'2024</td> <td></td> <td> </td> <td> </td> <td> </td> <td> 61.9</td> <td> 60.9</td> <td> 61.4</td> <td> 88.3</td> <td> 81.2</td> <td> 72.8</td> </tr> <tr> <td> XTrack</td> <td>Arxiv'2024</td> <td></td> <td> </td> <td> </td> <td> </td> <td> 59.8</td> <td> 59.7</td> <td> 59.7</td> <td> 86.5</td> <td> 81.2</td> <td> 71.4</td> </tr> <tr> <td> Seqtrackv2</td> <td>Arxiv'2024</td> <td></td> <td> </td> <td> </td> <td> </td> <td> 62.9</td> <td> 63.4</td> <td> 63.2</td> <td> 81.9</td> <td> 91.8</td> <td> 75.5</td> </tr> <tr> <td> MINet</td> <td>IVC'2024</td> <td></td> <td> </td> <td> </td> <td> </td> <td> 60.3</td> <td> 60.5</td> <td> 60.4</td> <td> 81.6</td> <td> 87.7</td> <td> 72.3</td> </tr> <tr> <td> KSTrack</td> <td>TCSVT'2024</td> <td></td> <td> </td> <td> </td> <td> </td> <td> 60.0</td> <td> 57.4</td> <td> 58.7</td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> CDAAT</td> <td>SPL'2024</td> <td>59.5</td> <td> 66.5</td> <td> 73.7</td> <td> 69.9</td> <td> 57.8</td> <td> 60.3</td> <td> 59.0</td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> FECD</td> <td>PRL'2024</td> <td></td> <td> 63.7</td> <td> 62.4</td> <td> 63.0</td> <td> 57.8</td> <td> 60.3</td> <td> 59.0</td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> SSLTrack</td> <td>PR'2024</td> <td>31.4</td> <td> 65.0</td> <td> 62.0</td> <td> 63.5</td> <td> 56.5</td> <td> 49.1</td> <td> 52.5</td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> VADT</td> <td>ICASSP'2024</td> <td></td> <td> </td> <td> </td> <td> </td> <td> 60.6</td> <td> 60.3</td> <td> 61.0</td> <td> 81.6</td> <td> 87.3</td> <td> 72.1</td> </tr> <tr> <td> ViPT</td> <td>CVPR'2023</td> <td></td> <td> </td> <td> </td> <td> </td> <td> 59.2</td> <td> 59.6</td> <td> 59.4</td> <td> 87.1</td> <td> 81.5</td> <td> 72.1</td> </tr> <tr> <td> FDAFT</td> <td>PRCV'2023</td> <td></td> <td> </td> <td> </td> <td> </td> <td> 62.5</td> <td> 61.5</td> <td> 62.0</td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> SPT</td> <td>AAAI'2023</td> <td>25.3</td> <td> 65.4</td> <td> 72.6</td> <td> 68.8</td> <td> 52.7</td> <td> 54.9</td> <td> 53.8</td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> HMAD</td> <td>ACMMMA'2023</td> <td>50.0</td> <td> </td> <td> </td> <td> </td> <td> 62.6</td> <td> 59.7</td> <td> 61.1</td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> DMTracker</td> <td>ECCVW'2022</td> <td></td> <td> 66.2</td> <td> 65.8</td> <td> 66.0</td> <td> 61.9</td> <td> 59.7</td> <td> 60.8</td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> ProTrack</td> <td>ACMMM'2022</td> <td> </td> <td> 74.7</td> <td> 76.7</td> <td> 65.6</td> <td> 58.3</td> <td> 57.3</td> <td> 57.8</td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> DeT</td> <td>ICCV'2021</td> <td></td> <td> 67.4</td> <td> 64.2</td> <td> 65.7</td> <td> 56.0</td> <td> 50.6</td> <td> 53.2</td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> TSDM</td> <td>ICPR'2021</td> <td></td> <td> 53.5</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> SiamOC</td> <td>ICSP'2021</td> <td></td> <td> 41.1</td> <td> 34.6</td> <td> 37.6</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> DAL</td> <td>ICPR'2021</td> <td>20</td> <td> </td> <td> </td> <td> 61.8</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> </table> <table> <tr> <th colspan="1"></th> <th colspan="1"></th> <th colspan="1"></th> <th colspan="3">RGBD1K</th> <th colspan="3">D2CUBE</th> <th colspan="3">ARKittrack</th> </tr> <tr> <td> Methods</td> <td>Venue</td> <td>Speed</td> <td> Pr</td> <td> Re</td> <td> F-score</td> <td> Pr</td> <td> Re</td> <td> F-score</td> <td> Pr</td> <td> Re</td> <td> F-score</td> </tr> <tr> <td> DepthRefiner</td> <td>ICME'2024</td> <td>32/A100</td> <td>50.0</td> <td> 52.9</td> <td> 51.6</td> <td> </td> <td> </td> <td> </td> <td>51.0</td> <td>47.8</td> <td>49.3</td> </tr> <tr> <td> TABBTrack</td> <td>PR'2024</td> <td>27/RTX3090</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td>51.0</td> <td>47.8</td> <td>49.3</td> </tr> <tr> <td> CDAAT</td> <td>SPL'2024</td> <td>59.5</td> <td> 54.9</td> <td> 58.3</td> <td> 56.6</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> SSLTrack</td> <td>PR'2024</td> <td></td> <td>57.0</td> <td> 47.8</td> <td> 52.0</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> EMT</td> <td>CVPR'2023</td> <td>120.3</td> <td></td> <td> </td> <td> </td> <td> 65.3</td> <td> 60.9</td> <td> 63.0</td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> RGBD1K</td> <td>AAAI'2023</td> <td>25.3</td> <td> 54.5</td> <td> 57.8</td> <td> 56.1</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> HMAD</td> <td>ACMMMA'2023</td> <td>50.0</td> <td> 57.3</td> <td> 55.2</td> <td> 56.2</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <!-- <tr> <td> DMTracker</td> <td>ECCVW'2022</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> 66.9</td> <td> 64.4</td> <td> 65.6</td> <td> </td> <td> </td> <td> </td> </tr> --> <tr> <td> DeT</td> <td>ICCV'2021</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> 60.8</td> <td> 58.7</td> <td> 59.7</td> <td> 42.8</td> <td> 40.5</td> <td> 41.6</td> </tr> <tr> <td> DAL</td> <td>ICPR'2021</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> 52.9</td> <td> 56.5</td> <td> 54.7</td> <td> 44.6</td> <td> 32.9</td> <td> 37.8</td> </tr> <tr> <td> TSDM</td> <td>ICPR'2021</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> 52.1</td> <td> 49.2</td> <td> 50.6</td> <td> 38.9</td> <td> 29.2</td> <td> 33.4</td> </tr> </table> <table> <tr> <th colspan="1"></th> <th colspan="1"></th> <th colspan="1"></th> <th colspan="2">STC</th> <th colspan="11">PTB</th> </tr> <tr> <td> Methods</td> <td>Venue</td> <td>Speed</td> <td> PR</td> <td> SR</td> <td> Human</td> <td> Animal</td> <td> Rigid</td> <td> Large</td> <td> Small</td> <td> Slow</td> <td> Fast</td> <td> Occ.</td> <td> No-Occ.</td> <td> Passive</td> <td> Active</td> </tr> <tr> <td> KSTrack</td> <td>TCSVT'2024</td> <td></td> <td> </td> <td> </td> <td> 77.3</td> <td> 84.9</td> <td> 83.6</td> <td> 79.8</td> <td> 83.3</td> <td> 82.6</td> <td> 81.3</td> <td> 73.4</td> <td> 96.8</td> <td> 80.3</td> <td> 82.2</td> </tr> <tr> <td> SSLTrack</td> <td>PR'2024</td> <td></td> <td> </td> <td> 64.0</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td></td> <td> </td> <td> </td> </tr> <tr> <td> FECD</td> <td>PRL'2024</td> <td></td> <td> </td> <td> 63.0</td> <td> 65.0</td> <td> 85.0</td> <td> 88.0</td> <td> 75.0</td> <td> 80.0</td> <td> 88.0</td> <td> 73.0</td> <td> 65.0</td> <td> 94.0</td> <td> 89.0</td> <td> 73.0</td> </tr> <tr> <td> RGBD1K</td> <td>AAAI'2023</td> <td>25.3</td> <td> </td> <td> 67.0</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> DMTracker</td> <td>ECCVW'2022</td> <td></td> <td> </td> <td> 63.0</td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> TSDM</td> <td>ICPR'2021</td> <td></td> <td> </td> <td> </td> <td> 71.0</td> <td> 85.0</td> <td> 86.0</td> <td> 77.0</td> <td> 81.0</td> <td> 87.0</td> <td> 76.0</td> <td> 69.0</td> <td> 94.0</td> <td> 84.0</td> <td> 78.0</td> </tr> <tr> <td> 3s-RGBD</td> <td>Neurocomputing'2021</td> <td> </td> <td> 59.0</td> <td> 49.0</td> <td> 77.0</td> <td> 68.0</td> <td> 81.0</td> <td> 76.0</td> <td> 77.0</td> <td> 81.0</td> <td> 75.0</td> <td> 71.0</td> <td> 85.0</td> <td> 85.0</td> <td> 74.0</td> </tr> <tr> <td> DAL</td> <td>ICPR'2021</td> <td>20</td> <td> 85.0</td> <td> 64.0</td> <td> 78.0</td> <td> 86.0</td> <td> 81.0</td> <td> 76.0</td> <td> 84.0</td> <td> 83.0</td> <td> 80.0</td> <td> 72.0</td> <td> 93.0</td> <td> 78.0</td> <td> 82.0</td> </tr> <tr> <td> WCO</td> <td>IEEE Sensors Journal'2020</td> <td></td> <td> </td> <td> </td> <td> 78.0</td> <td> 67.0</td> <td> 80.0</td> <td> 76.0</td> <td> 75.0</td> <td> 78.0</td> <td> 73.0</td> <td> 66.0</td> <td> 86.0</td> <td> 85.0</td> <td> 72.0</td> </tr> <tr> <td> RF-CFF</td> <td>Applied Soft Computing Journal'2020</td> <td></td> <td> </td> <td> </td> <td> 62.0</td> <td> 79.0</td> <td> 78.0</td> <td> 69.0</td> <td> 73.0</td> <td> 81.0</td> <td> 68.0</td> <td> 57.0</td> <td> 91.0</td> <td> 80.0</td> <td> 68.0</td> </tr> <tr> <td> CF-RGBD</td> <td>Engineering Applications of Artificial Intelligence'2020</td> <td></td> <td> </td> <td> </td> <td> 61.0</td> <td> 75.0</td> <td> 80.0</td> <td> 71.0</td> <td> 71.0</td> <td> 79.0</td> <td> 68.0</td> <td> 56.0</td> <td> 91.0</td> <td> 80.0</td> <td> 67.0</td> </tr> <tr> <td> CA3DMS</td> <td>TMM'2019</td> <td>63</td> <td> </td> <td> </td> <td> 64.0</td> <td> 73.0</td> <td> 81.0</td> <td> 73.0</td> <td> 72.0</td> <td> 80.0</td> <td> 69.0</td> <td> 61.0</td> <td> 88.0</td> <td> 83.0</td> <td> 68.0</td> </tr> <tr> <td> Depth-CCF</td> <td>GSKI'2019</td> <td></td> <td> </td> <td> </td> <td> 70.0</td> <td> 65.0</td> <td> 79.0</td> <td> 71.0</td> <td> 73.0</td> <td> 78.0</td> <td> 70.0</td> <td> 64.0</td> <td> 84.0</td> <td> 84.0</td> <td> 67.0</td> </tr> <tr> <td> H-FCN</td> <td>INFFUS'2019</td> <td>19.47</td> <td> </td> <td> </td> <td> 81.0</td> <td> 74.0</td> <td> 80.0</td> <td> 82.0</td> <td> 77.0</td> <td> 78.0</td> <td> 74.0</td> <td> 83.0</td> <td> 87.0</td> <td> 80.0</td> <td> 78.0</td> </tr> <tr> <td> OTR</td> <td>CVPR'2019</td> <td></td> <td> 59.0</td> <td> 49.0</td> <td> 77.0</td> <td> 68.0</td> <td> 81.0</td> <td> 76.0</td> <td> 77.0</td> <td> 81.0</td> <td> 75.0</td> <td> 71.0</td> <td> 85.0</td> <td> 85.0</td> <td> 74.0</td> </tr> <tr> <td> RGBD-OD</td> <td>CIS'2019</td> <td></td> <td> </td> <td> </td> <td> 72.0</td> <td> 71.0</td> <td> 73.0</td> <td> 74.0</td> <td> 71.0</td> <td> 76.0</td> <td> 70.0</td> <td> 65.0</td> <td> 82.0</td> <td> 77.0</td> <td> 70.0</td> </tr> <tr> <td> HST</td> <td>CCIFER'2019</td> <td></td> <td> </td> <td> </td> <td> 66.0</td> <td> 62.0</td> <td> 77.0</td> <td> 69.0</td> <td> 69.0</td> <td> 74.0</td> <td> 68.0</td> <td> 62.0</td> <td> 79.0</td> <td> 78.0</td> <td> 66.0</td> </tr> <tr> <td> ECO_TA</td> <td>IEEE Sensors Journal'2019</td> <td>13.1</td> <td> </td> <td> </td> <td> 77.0</td> <td> 65.0</td> <td> 79.0</td> <td> 77.0</td> <td> 74.0</td> <td> 79.0</td> <td> 74.0</td> <td> 68.0</td> <td> 85.0</td> <td> 84.0</td> <td> 72.0</td> </tr> <tr> <td> GFL</td> <td>Complexity'2019</td> <td>20.74</td> <td> </td> <td> </td> <td> 82.0</td> <td> 75.0</td> <td> 78.0</td> <td> 81.0</td> <td> 74.0</td> <td> 82.0</td> <td> 73.0</td> <td> 81.0</td> <td> 84.0</td> <td> 79.0</td> <td> 68.0</td> </tr> <tr> <td> DM-DCF</td> <td>ICPR'2018</td> <td>8.3</td> <td> </td> <td> </td> <td> 76.0</td> <td> 58.0</td> <td> 77.0</td> <td> 72.0</td> <td> 73.0</td> <td> 75.0</td> <td> 72.0</td> <td> 69.0</td> <td> 78.0</td> <td> 82.0</td> <td> 69.0</td> </tr> <tr> <td> CSRDCF_RGBD++</td> <td>ECCVW'2018</td> <td></td> <td> </td> <td> </td> <td> 77.0</td> <td> 65.0</td> <td> 76.0</td> <td> 75.0</td> <td> 73.0</td> <td> 80.0</td> <td> 72.0</td> <td> 70.0</td> <td> 79.0</td> <td> 79.0</td> <td> 72.0</td> </tr> <tr> <td> MMDFF</td> <td>Complexity'2018</td> <td></td> <td> </td> <td> </td> <td> 83.0</td> <td> 86.0</td> <td> 85.0</td> <td> 85.0</td> <td> 86.0</td> <td> 82.0</td> <td> 83.0</td> <td> 87.0</td> <td> 87.0</td> <td> 82.0</td> <td> 83.0</td> </tr> <tr> <td> OAPCF</td> <td>IEEE Access'2018</td> <td>17</td> <td> </td> <td> </td> <td> 70.0</td> <td> 66.0</td> <td> 68.0</td> <td> 69.0</td> <td> 70.0</td> <td> 75.0</td> <td> 67.0</td> <td> 73.0</td> <td> 76.0</td> <td> 71.0</td> <td> 69.0</td> </tr> <tr> <td> KCFDF</td> <td>ICONIP'2017</td> <td>10.49</td> <td> </td> <td> </td> <td> 45.0</td> <td> 72.0</td> <td> 75.0</td> <td> 55.0</td> <td> 67.0</td> <td> 73.0</td> <td> 57.0</td> <td> 43.0</td> <td> 87.0</td> <td> 69.0</td> <td> 59.0</td> </tr> <tr> <td> DBM</td> <td>Sensors'2017</td> <td>0.1</td> <td> </td> <td> </td> <td> 80.1</td> <td> 72.9</td> <td> </td> <td> </td> <td> </td> <td> 82.3</td> <td> 77.5</td> <td> 81.2</td> <td> 82.6</td> <td> </td> <td> </td> </tr> <tr> <td> DLS</td> <td>ICPR'2016</td> <td> </td> <td> </td> <td> </td> <td> 77.0</td> <td> 69.0</td> <td> 73.0</td> <td> 80.0</td> <td> 70.0</td> <td> 73.0</td> <td> 74.0</td> <td> 66.0</td> <td> 85.0</td> <td> 72.0</td> <td> 75.0</td> </tr> <tr> <td> OAPF</td> <td>CVIU'2016</td> <td>0.9</td> <td> </td> <td> </td> <td> 64.2</td> <td> 84.8</td> <td> 77.2</td> <td> 72.7</td> <td> 73.4</td> <td> 85.1</td> <td> 68.4</td> <td> 64.4</td> <td> 85.1</td> <td> 77.7</td> <td> 71.4</td> </tr> <tr> <td> 3D-T</td> <td>CVPR'2016</td> <td></td> <td> </td> <td> </td> <td> 81.0</td> <td> 64.0</td> <td> 73.0</td> <td> 80.0</td> <td> 71.0</td> <td> 75.0</td> <td> 75.0</td> <td> 73.0</td> <td> 78.0</td> <td> 79.0</td> <td> 73.0</td> </tr> <tr> <td> DOHR</td> <td>FSKD'2016</td> <td></td> <td> </td> <td> </td> <td> 45.0</td> <td> 49.0</td> <td> 42.0</td> <td> 48.0</td> <td> 42.0</td> <td> 50.0</td> <td> 43.0</td> <td> 38.0</td> <td> 54.0</td> <td> 54.0</td> <td> 41.0</td> </tr> </table>Contributors
Questions
If you have any questions, please contact zhangyong_tang_jnu@163.com, and wechat: Tzy18861871359 is also welcomed.