Home

Awesome

MAN

🌟🌟 Checkout our new work HSDT, a superior HSI denoising transformer.

Official PyTorch Implementation of Mixed Attention Network for Hyperspectral Image Denoising.

Zeqiang Lai, Ying Fu.

<sub><sup>Overall Architecture</sup></sub>
<img src="asset/arch2.png" width="350px"/>

🌟 Hightlights

<details> <summary>Illustrations of each network components.</summary> <br/>
<sub><sup>Progressive Spectral Channel Attention</sup></sub><sub><sup>Attentive Skip Connection</sup></sub>
<img src="asset/psca.png" width="350px"/><img src="asset/asc.png" width="300px"/>
<table > <thead> <tr> <th> <sub><sup>Multi-Head Recurrent Spectral Attention</sup></sub> </th> </tr> </thead> <tbody> <tr> <td> <img src="asset/mhrsa.png" width="678px"/> </td> </tr> </tbody> </table> </details>

Usage

Download the pretrained model at Github Release.

python -m hsirun.test -a mans.man -r ckpt/man_gaussian.pth -t icvl_512_30 icvl_512_50
python -m hsirun.train -a mans.man -s schedule.gaussian
python -m hsirun.train -a mans.man -s schedule.complex -r checkpoints/mans.man/model_latest.pth
python -m hsiboard.app --logdir results
import torch
from mans import man

net = man()
x = torch.randn(4,1,31,64,64)
y = net(x)
import torch
from mans import (
    MAB, BiMAB,
    AdaptiveSkipConnection, SimplifiedChannelAttention,
)

x = torch.randn(4,16,31,64,64)
block = MAB(16) # or BiMAB(16)
out = block(x) # [4,16,31,64,64]

y = torch.randn(4,16,31,64,64)
block = AdaptiveSkipConnection(16)
out = block(x, y) # [4,16,31,64,64]

block = SimplifiedChannelAttention(16)
out = block(x) # [4,16,31,64,64]

Performance

MAN v2

<details> <summary>Gaussian denoising on ICVL</summary> <img src="asset/gaussian_v2.png" width="800px"/> </details> <details> <summary>Complex denoising on ICVL</summary> <img src="asset/complex_v2.png" width="800px"/> </details>

MAN

<details> <summary>Gaussian denoising on ICVL</summary> <img src="asset/gaussian.png" width="800px"/> </details> <details> <summary>Complex denoising on ICVL</summary> <img src="asset/complex.png" width="800px"/> </details>

Citations

@article{lai2023mixed,
  title={Mixed Attention Network for Hyperspectral Image Denoising},
  author={Lai, Zeqiang and Fu, Ying},
  journal={arXiv preprint arXiv:2301.11525},
  year={2023}
}
@inproceedings{lai2023hsdt,
  author = {Lai, Zeqiang and Chenggang, Yan and Fu, Ying},
  title = {Hybrid Spectral Denoising Transformer with Guided Attention},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year = {2023},
}