Home

Awesome

HSDT

PWC PWC

Official PyTorch Implementation of Hybrid Spectral Denoising Transformer with Guided Attention. ICCV 2023

Zeqiang Lai, Chenggang Yan, Ying Fu.

<img src="asset/arch.png" width="600px"/>

🌟 Hightlights

🤗 See Also

Usage

Download the pretrained model at Github Release.

python -m hsirun.test -a hsdt.hsdt -r ckpt/man_gaussian.pth -t icvl_512_30 icvl_512_50
python -m hsirun.train -a hsdt.hsdt -s schedule.gaussian
python -m hsirun.train -a hsdt.hsdt -s schedule.complex -r checkpoints/hsdts.hsdt/model_latest.pth
python -m hsiboard.app --logdir results
import torch
from hsdt import hsdt

net = hsdt()
x = torch.randn(4,1,31,64,64)
y = net(x)
import torch
from hsdt import (
    S3Conv
)

x = torch.randn(4,16,31,64,64)
block = S3Conv(16, 16, 3, 1, 1)
out = block(x) # [4,16,31,64,64]

Tips for training

Performance

<details> <summary>Gaussian denoising</summary> <img src="asset/gaussian.png" width="800px"/> </details> <details> <summary>Complex denoising</summary> <img src="asset/complex.png" width="800px"/> </details> <details> <summary>Real/CAVE denoising</summary> <img src="asset/real_cave.png" width="400px"/> </details> <details> <summary>Comparsion with other methods</summary> <img src="asset/cmp.png" width="800px"/> </details>

Citation

@inproceedings{lai2023hsdt,
  author = {Lai, Zeqiang and Chenggang, Yan and Fu, Ying},
  title = {Hybrid Spectral Denoising Transformer with Guided Attention},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year = {2023},
}