Home

Awesome

<h1 align="center">Consistency-Regularized Region-Growing Network for Semantic Segmentation of Urban Scenes with Point-Level Annotations</h1> <h3 align="center"> <a href="https://yonghaoxu.github.io/">Yonghao Xu</a> and <a href="http://pedram-ghamisi.com/">Pedram Ghamisi</a></h3> <br

This research has been conducted at the Institute of Advanced Research in Artificial Intelligence (IARAI).

This is the official PyTorch implementation of the weakly supervised semantic segmentation method for very high-resolution remote sensing image in our paper Consistency-Regularized Region-Growing Network for Semantic Segmentation of Urban Scenes with Point-Level Annotations.

Table of content

  1. Preparation
  2. Usage
  3. Paper
  4. Results
  5. Acknowledgement
  6. License

Preparation

├── <THE-ROOT-PATH-OF-DATA>/
│   ├── Vaihingen/     
|   |   ├── img/
|   |   ├── gt/
|   |   ├── point/
|   |   |   ├── an1/
|   |   |   ├── an2/
|   |   |   ├── an3/
|   |   |   ├── an4/
│   ├── Zurich/    
|   |   ├── img/
|   |   ├── gt/
|   |   ├── point/
|   |   |   ├── an1/
|   |   |   ├── an2/
|   |   |   ├── an3/
|   |   |   ├── an4/

Usage

CUDA_VISIBLE_DEVICES=0 python CRGNet_Vaihingen.py
CUDA_VISIBLE_DEVICES=0 python CRGNet_Zurich.py

Alternatively, you can download our pretrained models on Vaihingen or Zurich Summer for a quick look.

CUDA_VISIBLE_DEVICES=0 python GenVaihingen.py
CUDA_VISIBLE_DEVICES=0 python GenZurich.py
CUDA_VISIBLE_DEVICES=0 python SelfTrain_Vaihingen.py
CUDA_VISIBLE_DEVICES=0 python SelfTrain_Zurich.py
CUDA_VISIBLE_DEVICES=0 python TestVaihingen.py 
CUDA_VISIBLE_DEVICES=0 python TestZurich.py 

Results

MethodRGCRSTdCRFVaihingenZurich Summer
Baseline61.6360.13
+RG63.8965.58
+CR65.4868.61
+ST68.0771.26
+dCRF70.9275.68

Paper

Consistency-regularized region-growing network for semantic segmentation of urban scenes with point-level annotations

Please cite the following paper if the code is useful for your research:

@article{crgnet,
  title={Consistency-regularized region-growing network for semantic segmentation of urban scenes with point-level annotations}, 
  author={Xu, Yonghao and Ghamisi, Pedram},
  journal={IEEE Trans. Image Process.},  
  volume={31},
  pages={5038-5051},
  year={2022},
}

Acknowledgement

The authors would like to thank the International Society for Photogrammetry and Remote Sensing (ISPRS), and the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) for providing the Vaihingen dataset, and Dr. Michele Volpi for providing the Zurich Summer dataset.

Lovász-Softmax loss

PyDenseCRF

License

This repo is distributed under MIT License. The code can be used for academic purposes only.