Awesome
<p align="center"> <img src="./Image/DANet_logo.png" alt="Logo" width="210" height="auto"> <h3 align="center">A Single Stream Network for Robust and Real-time RGB-D Salient Object Detection</h3> <p align="center"> Xiaoqi Zhao, Lihe Zhang, Youwei Pang, Huchuan Lu, Lei Zhang <br /> <a href="https://arxiv.org/pdf/2007.06811.pdf"><strong>⭐ arXiv »</strong></a> <br /> </p> </p>The official repo of the ECCV 2020 paper A Single Stream Network for Robust and Real-time RGB-D Salient Object Detection.
Saliency map
Google Drive / BaiduYunPan(3m9i)
Related Works
- (ECCV 2020 Oral) Suppress and Balance: A Simple Gated Network for Salient Object Detection: https://github.com/Xiaoqi-Zhao-DLUT/GateNet-RGB-Saliency
- (ECCV 2020) Hierarchical Dynamic Filtering Network for RGB-D Salient Object Detection: https://github.com/lartpang/HDFNet
- (CVPR 2020) Multi-scale Interactive Network for Salient Object Detection: https://github.com/lartpang/MINet
Network
Module
Quantitative comparison
Visual comparison
Trained Model
You can download the trained VGG16-model(DUT-RGBD or NJUD&NLPR) at BaiduYunPan(5uhd).
Requirement
- Python 3.7
- PyTorch 1.5.0
- torchvision
- numpy
- Pillow
- Cython
Training
1.Set the path of training sets in config.py
2.Run train.py
Testing
1.Set the path of testing sets in config.py
2.Run generate_salmap.py (can generate the predicted saliency maps)
3.Run generate_visfeamaps.py (can visualize feature maps)
4.Run test_metric_score.py (can evaluate the predicted saliency maps in terms of fmax,fmean,wfm,sm,em,mae). You also can use the toolkit released by us:https://github.com/lartpang/Py-SOD-VOS-EvalToolkit.
BibTex
@inproceedings{DANet,
title={A Single Stream Network for Robust and Real-time RGB-D Salient Object Detection},
author={Zhao, Xiaoqi and Zhang, Lihe and Pang, Youwei and Lu, Huchuan and Zhang, Lei},
booktitle=ECCV,
year={2020}
}