Awesome
Domain-Separation-Graph-Neural-Networks-for-Saliency-Object-Ranking
Official implementation of the CVPR 2024 paper Domain Separation Graph Neural Networks for Saliency Object Ranking. <img src="https://github.com/Wu-ZJ/DSGNN/blob/main/resources/main.png"/>
Installation
Our code is primarily based on MMDetection. Please refer to the MMDetection Installation for installation instructions.
Dataset
Download the ASSR Dataset and IRSR Dataset.
Training
ASSR Dataset
For resnet-50 backbone model:
bash ./tools/dist_train.sh configs/mask2former_sor/mask2former_sor_r50_assr.py num_gpus --load-from pertrained_model_path
For swin-L backbone model:
bash ./tools/dist_train.sh configs/mask2former_sor/mask2former_sor_swin-l-int21k_assr.py num_gpus --load-from pertrained_model_path
IRSR Dataset
For resnet-50 backbone model:
bash ./tools/dist_train.sh configs/mask2former_sor/mask2former_sor_r50_irsr.py num_gpus --load-from pertrained_model_path
For swin-L backbone model:
bash ./tools/dist_train.sh configs/mask2former_sor/mask2former_sor_swin-l-int21k_irsr.py num_gpus --load-from pertrained_model_path
</details>
Testing
ASSR Dataset
For resnet-50 backbone model:
bash ./tools/dist_test.sh configs/mask2former_sor/mask2former_sor_r50_assr.py model_path 1 --eval mae
For swin-L backbone model:
bash ./tools/dist_test.sh configs/mask2former_sor/mask2former_sor_swin-l-int21k_assr.py model_path 1 --eval mae
IRSR Dataset
For resnet-50 backbone model:
bash ./tools/dist_test.sh configs/mask2former_sor/mask2former_sor_r50_irsr.py model_path 1 --eval mae
For swin-L backbone model:
bash ./tools/dist_test.sh configs/mask2former_sor/mask2former_sor_swin-l-int21k_irsr.py model_path 1 --eval mae
Pretrained Models
Model | Dataset | Download |
---|---|---|
Pertrained-Res50 | COCO | mask2former_r50_lsj_8x2_50e_coco |
Pertrained-SwinL | COCO | mask2former_swin-l-p4-w12-384-in21k_lsj_16x1_100e_coco-panoptic |
Results
Model | Dataset | SA-SOR | Download |
---|---|---|---|
DSGNN-Res50 | ASSR | 0.716 | model (3qm5) | visualization results (d8m1) |
DSGNN-SwinL | ASSR | 0.761 | model (1pjw) | visualization results (9esz) |
DSGNN-Res50 | IRSR | 0.569 | model (mfdh) |
DSGNN-SwinL | IRSR | 0.607 | model (sq1r) |
Citation
@InProceedings{Wu_2024_CVPR,
author = {Wu, Zijian and Lu, Jun and Han, Jing and Bai, Lianfa and Zhang, Yi and Zhao, Zhuang and Song, Siyang},
title = {Domain Separation Graph Neural Networks for Saliency Object Ranking},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {3964-3974}
}