Home

Awesome

YOLOv9

Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information

arxiv.org Hugging Face Spaces Hugging Face Spaces Colab OpenCV

<div align="center"> <a href="./"> <img src="./figure/performance.png" width="79%"/> </a> </div>

Performance

MS COCO

ModelTest SizeAP<sup>val</sup>AP<sub>50</sub><sup>val</sup>AP<sub>75</sub><sup>val</sup>Param.FLOPs
YOLOv9-T64038.3%53.1%41.3%2.0M7.7G
YOLOv9-S64046.8%63.4%50.7%7.1M26.4G
YOLOv9-M64051.4%68.1%56.1%20.0M76.3G
YOLOv9-C64053.0%70.2%57.8%25.3M102.1G
YOLOv9-E64055.6%72.8%60.6%57.3M189.0G
<!-- | [**YOLOv9 (ReLU)**]() | 640 | **51.9%** | **69.1%** | **56.5%** | **25.3M** | **102.1G** | --> <!-- tiny, small, and medium models will be released after the paper be accepted and published. -->

Useful Links

<details><summary> <b>Expand</b> </summary>

Custom training: https://github.com/WongKinYiu/yolov9/issues/30#issuecomment-1960955297

ONNX export: https://github.com/WongKinYiu/yolov9/issues/2#issuecomment-1960519506 https://github.com/WongKinYiu/yolov9/issues/40#issue-2150697688 https://github.com/WongKinYiu/yolov9/issues/130#issue-2162045461

ONNX export for segmentation: https://github.com/WongKinYiu/yolov9/issues/260#issue-2191162150

TensorRT inference: https://github.com/WongKinYiu/yolov9/issues/143#issuecomment-1975049660 https://github.com/WongKinYiu/yolov9/issues/34#issue-2150393690 https://github.com/WongKinYiu/yolov9/issues/79#issue-2153547004 https://github.com/WongKinYiu/yolov9/issues/143#issue-2164002309

QAT TensorRT: https://github.com/WongKinYiu/yolov9/issues/327#issue-2229284136 https://github.com/WongKinYiu/yolov9/issues/253#issue-2189520073

TensorRT inference for segmentation: https://github.com/WongKinYiu/yolov9/issues/446

TFLite: https://github.com/WongKinYiu/yolov9/issues/374#issuecomment-2065751706

OpenVINO: https://github.com/WongKinYiu/yolov9/issues/164#issue-2168540003

C# ONNX inference: https://github.com/WongKinYiu/yolov9/issues/95#issue-2155974619

C# OpenVINO inference: https://github.com/WongKinYiu/yolov9/issues/95#issuecomment-1968131244

OpenCV: https://github.com/WongKinYiu/yolov9/issues/113#issuecomment-1971327672

Hugging Face demo: https://github.com/WongKinYiu/yolov9/issues/45#issuecomment-1961496943

CoLab demo: https://github.com/WongKinYiu/yolov9/pull/18

ONNXSlim export: https://github.com/WongKinYiu/yolov9/pull/37

YOLOv9 ROS: https://github.com/WongKinYiu/yolov9/issues/144#issue-2164210644

YOLOv9 ROS TensorRT: https://github.com/WongKinYiu/yolov9/issues/145#issue-2164218595

YOLOv9 Julia: https://github.com/WongKinYiu/yolov9/issues/141#issuecomment-1973710107

YOLOv9 MLX: https://github.com/WongKinYiu/yolov9/issues/258#issue-2190586540

YOLOv9 StrongSORT with OSNet: https://github.com/WongKinYiu/yolov9/issues/299#issue-2212093340

YOLOv9 ByteTrack: https://github.com/WongKinYiu/yolov9/issues/78#issue-2153512879

YOLOv9 DeepSORT: https://github.com/WongKinYiu/yolov9/issues/98#issue-2156172319

YOLOv9 counting: https://github.com/WongKinYiu/yolov9/issues/84#issue-2153904804

YOLOv9 speed estimation: https://github.com/WongKinYiu/yolov9/issues/456

YOLOv9 face detection: https://github.com/WongKinYiu/yolov9/issues/121#issue-2160218766

YOLOv9 segmentation onnxruntime: https://github.com/WongKinYiu/yolov9/issues/151#issue-2165667350

Comet logging: https://github.com/WongKinYiu/yolov9/pull/110

MLflow logging: https://github.com/WongKinYiu/yolov9/pull/87

AnyLabeling tool: https://github.com/WongKinYiu/yolov9/issues/48#issue-2152139662

AX650N deploy: https://github.com/WongKinYiu/yolov9/issues/96#issue-2156115760

Conda environment: https://github.com/WongKinYiu/yolov9/pull/93

AutoDL docker environment: https://github.com/WongKinYiu/yolov9/issues/112#issue-2158203480

</details>

Installation

Docker environment (recommended)

<details><summary> <b>Expand</b> </summary>
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolov9 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov9 --shm-size=64g nvcr.io/nvidia/pytorch:21.11-py3

# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx

# pip install required packages
pip install seaborn thop

# go to code folder
cd /yolov9
</details>

Evaluation

yolov9-s-converted.pt yolov9-m-converted.pt yolov9-c-converted.pt yolov9-e-converted.pt yolov9-s.pt yolov9-m.pt yolov9-c.pt yolov9-e.pt gelan-s.pt gelan-m.pt gelan-c.pt gelan-e.pt

# evaluate converted yolov9 models
python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c-converted.pt' --save-json --name yolov9_c_c_640_val

# evaluate yolov9 models
# python val_dual.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './yolov9-c.pt' --save-json --name yolov9_c_640_val

# evaluate gelan models
# python val.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.7 --device 0 --weights './gelan-c.pt' --save-json --name gelan_c_640_val

You will get the results:

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.530
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.702
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.578
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.362
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.585
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.693
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.652
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.702
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.541
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.760
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844

Training

Data preparation

bash scripts/get_coco.sh

Single GPU training

# train yolov9 models
python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15

# train gelan models
# python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15

Multiple GPU training

# train yolov9 models
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_dual.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15

# train gelan models
# python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch 128 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15

Re-parameterization

See reparameterization.ipynb.

Inference

<div align="center"> <a href="./"> <img src="./figure/horses_prediction.jpg" width="49%"/> </a> </div>
# inference converted yolov9 models
python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c-converted.pt' --name yolov9_c_c_640_detect

# inference yolov9 models
# python detect_dual.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './yolov9-c.pt' --name yolov9_c_640_detect

# inference gelan models
# python detect.py --source './data/images/horses.jpg' --img 640 --device 0 --weights './gelan-c.pt' --name gelan_c_c_640_detect

Citation

@article{wang2024yolov9,
  title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},
  author={Wang, Chien-Yao  and Liao, Hong-Yuan Mark},
  booktitle={arXiv preprint arXiv:2402.13616},
  year={2024}
}
@article{chang2023yolor,
  title={{YOLOR}-Based Multi-Task Learning},
  author={Chang, Hung-Shuo and Wang, Chien-Yao and Wang, Richard Robert and Chou, Gene and Liao, Hong-Yuan Mark},
  journal={arXiv preprint arXiv:2309.16921},
  year={2023}
}

Teaser

Parts of code of YOLOR-Based Multi-Task Learning are released in the repository.

<div align="center"> <a href="./"> <img src="./figure/multitask.png" width="99%"/> </a> </div>

Object Detection

gelan-c-det.pt

object detection

# coco/labels/{split}/*.txt
# bbox or polygon (1 instance 1 line)
python train.py --workers 8 --device 0 --batch 32 --data data/coco.yaml --img 640 --cfg models/detect/gelan-c.yaml --weights '' --name gelan-c-det --hyp hyp.scratch-high.yaml --min-items 0 --epochs 300 --close-mosaic 10
ModelTest SizeParam.FLOPsAP<sup>box</sup>
GELAN-C-DET64025.3M102.1G52.3%
YOLOv9-C-DET64025.3M102.1G53.0%

Instance Segmentation

gelan-c-seg.pt

object detection instance segmentation

# coco/labels/{split}/*.txt
# polygon (1 instance 1 line)
python segment/train.py --workers 8 --device 0 --batch 32  --data coco.yaml --img 640 --cfg models/segment/gelan-c-seg.yaml --weights '' --name gelan-c-seg --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
ModelTest SizeParam.FLOPsAP<sup>box</sup>AP<sup>mask</sup>
GELAN-C-SEG64027.4M144.6G52.3%42.4%
YOLOv9-C-SEG64027.4M145.5G53.3%43.5%

Panoptic Segmentation

gelan-c-pan.pt

object detection instance segmentation semantic segmentation stuff segmentation panoptic segmentation

# coco/labels/{split}/*.txt
# polygon (1 instance 1 line)
# coco/stuff/{split}/*.txt
# polygon (1 semantic 1 line)
python panoptic/train.py --workers 8 --device 0 --batch 32  --data coco.yaml --img 640 --cfg models/panoptic/gelan-c-pan.yaml --weights '' --name gelan-c-pan --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
ModelTest SizeParam.FLOPsAP<sup>box</sup>AP<sup>mask</sup>mIoU<sub>164k/10k</sub><sup>semantic</sup>mIoU<sup>stuff</sup>PQ<sup>panoptic</sup>
GELAN-C-PAN64027.6M146.7G52.6%42.5%39.0%/48.3%52.7%39.4%
YOLOv9-C-PAN64028.8M187.0G52.7%43.0%39.8%/-52.2%40.5%

Image Captioning (not yet released)

<!--[`gelan-c-cap.pt`]()-->

object detection instance segmentation semantic segmentation stuff segmentation panoptic segmentation image captioning

# coco/labels/{split}/*.txt
# polygon (1 instance 1 line)
# coco/stuff/{split}/*.txt
# polygon (1 semantic 1 line)
# coco/annotations/*.json
# json (1 split 1 file)
python caption/train.py --workers 8 --device 0 --batch 32  --data coco.yaml --img 640 --cfg models/caption/gelan-c-cap.yaml --weights '' --name gelan-c-cap --hyp hyp.scratch-high.yaml --no-overlap --epochs 300 --close-mosaic 10
ModelTest SizeParam.FLOPsAP<sup>box</sup>AP<sup>mask</sup>mIoU<sub>164k/10k</sub><sup>semantic</sup>mIoU<sup>stuff</sup>PQ<sup>panoptic</sup>BLEU@4<sup>caption</sup>CIDEr<sup>caption</sup>
GELAN-C-CAP64047.5M-51.9%42.6%42.5%/-56.5%41.7%38.8122.3
YOLOv9-C-CAP64047.5M-52.1%42.6%43.0%/-56.4%42.1%39.1122.0
<!--| [**YOLOR-MT**]() | 640 | 79.3M | - | **51.0%** | **41.7%** | **-/49.6%** | **55.9%** | **40.5%** | **35.7** | **112.7** |-->

Acknowledgements

<details><summary> <b>Expand</b> </summary> </details>