Awesome
<p align="center"> <img src="assets/banner-YOLO.png" align="middle" width = "1000" /> </p>English | ็ฎไฝไธญๆ
<br> <div> </a> <a href="https://colab.research.google.com/github/meituan/YOLOv6/blob/main/turtorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/code/housanduo/yolov6"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> </div> <br>YOLOv6
Implementation of paper:
- YOLOv6 v3.0: A Full-Scale Reloading ๐ฅ
- YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications
What's New
- [2023.09.15] Release YOLOv6-Segmentation. ๐ Performance
- [2023.04.28] Release YOLOv6Lite models on mobile or CPU. โญ๏ธ Mobile Benchmark
- [2023.03.10] Release YOLOv6-Face. ๐ฅ Performance
- [2023.03.02] Update base models to version 3.0.
- [2023.01.06] Release P6 models and enhance the performance of P5 models. โญ๏ธ Benchmark
- [2022.11.04] Release base models to simplify the training and deployment process.
- [2022.09.06] Customized quantization methods. ๐ Quantization Tutorial
- [2022.09.05] Release M/L models and update N/T/S models with enhanced performance.
- [2022.06.23] Release N/T/S models with excellent performance.
Benchmark
Model | Size | mAP<sup>val<br/>0.5:0.95 | Speed<sup>T4<br/>trt fp16 b1 <br/>(fps) | Speed<sup>T4<br/>trt fp16 b32 <br/>(fps) | Params<br/><sup> (M) | FLOPs<br/><sup> (G) |
---|---|---|---|---|---|---|
YOLOv6-N | 640 | 37.5 | 779 | 1187 | 4.7 | 11.4 |
YOLOv6-S | 640 | 45.0 | 339 | 484 | 18.5 | 45.3 |
YOLOv6-M | 640 | 50.0 | 175 | 226 | 34.9 | 85.8 |
YOLOv6-L | 640 | 52.8 | 98 | 116 | 59.6 | 150.7 |
YOLOv6-N6 | 1280 | 44.9 | 228 | 281 | 10.4 | 49.8 |
YOLOv6-S6 | 1280 | 50.3 | 98 | 108 | 41.4 | 198.0 |
YOLOv6-M6 | 1280 | 55.2 | 47 | 55 | 79.6 | 379.5 |
YOLOv6-L6 | 1280 | 57.2 | 26 | 29 | 140.4 | 673.4 |
- All checkpoints are trained with self-distillation except for YOLOv6-N6/S6 models trained to 300 epochs without distillation.
- Results of the mAP and speed are evaluated on COCO val2017 dataset with the input resolution of 640ร640 for P5 models and 1280x1280 for P6 models.
- Speed is tested with TensorRT 7.2 on T4.
- Refer to Test speed tutorial to reproduce the speed results of YOLOv6.
- Params and FLOPs of YOLOv6 are estimated on deployed models.
Model | Size | mAP<sup>val<br/>0.5:0.95 | Speed<sup>T4<br/>trt fp16 b1 <br/>(fps) | Speed<sup>T4<br/>trt fp16 b32 <br/>(fps) | Params<br/><sup> (M) | FLOPs<br/><sup> (G) |
---|---|---|---|---|---|---|
YOLOv6-N | 640 | 35.9<sup>300e</sup><br/>36.3<sup>400e | 802 | 1234 | 4.3 | 11.1 |
YOLOv6-T | 640 | 40.3<sup>300e</sup><br/>41.1<sup>400e | 449 | 659 | 15.0 | 36.7 |
YOLOv6-S | 640 | 43.5<sup>300e</sup><br/>43.8<sup>400e | 358 | 495 | 17.2 | 44.2 |
YOLOv6-M | 640 | 49.5 | 179 | 233 | 34.3 | 82.2 |
YOLOv6-L-ReLU | 640 | 51.7 | 113 | 149 | 58.5 | 144.0 |
YOLOv6-L | 640 | 52.5 | 98 | 121 | 58.5 | 144.0 |
- Speed is tested with TensorRT 7.2 on T4.
Quantized model ๐
Model | Size | Precision | mAP<sup>val<br/>0.5:0.95 | Speed<sup>T4<br/>trt b1 <br/>(fps) | Speed<sup>T4<br/>trt b32 <br/>(fps) |
---|---|---|---|---|---|
YOLOv6-N RepOpt | 640 | INT8 | 34.8 | 1114 | 1828 |
YOLOv6-N | 640 | FP16 | 35.9 | 802 | 1234 |
YOLOv6-T RepOpt | 640 | INT8 | 39.8 | 741 | 1167 |
YOLOv6-T | 640 | FP16 | 40.3 | 449 | 659 |
YOLOv6-S RepOpt | 640 | INT8 | 43.3 | 619 | 924 |
YOLOv6-S | 640 | FP16 | 43.5 | 377 | 541 |
- Speed is tested with TensorRT 8.4 on T4.
- Precision is figured on models for 300 epochs.
Mobile Benchmark
Model | Size | mAP<sup>val<br/>0.5:0.95 | sm8350<br/><sup>(ms) | mt6853<br/><sup>(ms) | sdm660<br/><sup>(ms) | Params<br/><sup> (M) | FLOPs<br/><sup> (G) |
---|---|---|---|---|---|---|---|
YOLOv6Lite-S | 320*320 | 22.4 | 7.99 | 11.99 | 41.86 | 0.55 | 0.56 |
YOLOv6Lite-M | 320*320 | 25.1 | 9.08 | 13.27 | 47.95 | 0.79 | 0.67 |
YOLOv6Lite-L | 320*320 | 28.0 | 11.37 | 16.20 | 61.40 | 1.09 | 0.87 |
YOLOv6Lite-L | 320*192 | 25.0 | 7.02 | 9.66 | 36.13 | 1.09 | 0.52 |
YOLOv6Lite-L | 224*128 | 18.9 | 3.63 | 4.99 | 17.76 | 1.09 | 0.24 |
- From the perspective of model size and input image ratio, we have built a series of models on the mobile terminal to facilitate flexible applications in different scenarios.
- All checkpoints are trained with 400 epochs without distillation.
- Results of the mAP and speed are evaluated on COCO val2017 dataset, and the input resolution is the Size in the table.
- Speed is tested on MNN 2.3.0 AArch64 with 2 threads by arm82 acceleration. The inference warm-up is performed 10 times, and the cycle is performed 100 times.
- Qualcomm 888(sm8350), Dimensity 720(mt6853) and Qualcomm 660(sdm660) correspond to chips with different performances at the high, middle and low end respectively, which can be used as a reference for model capabilities under different chips.
- Refer to Test NCNN Speed tutorial to reproduce the NCNN speed results of YOLOv6Lite.
Quick Start
<details> <summary> Install</summary>git clone https://github.com/meituan/YOLOv6
cd YOLOv6
pip install -r requirements.txt
</details>
<details>
<summary> Reproduce our results on COCO</summary>
Please refer to Train COCO Dataset.
</details> <details open> <summary> Finetune on custom data</summary>Single GPU
# P5 models
python tools/train.py --batch 32 --conf configs/yolov6s_finetune.py --data data/dataset.yaml --fuse_ab --device 0
# P6 models
python tools/train.py --batch 32 --conf configs/yolov6s6_finetune.py --data data/dataset.yaml --img 1280 --device 0
Multi GPUs (DDP mode recommended)
# P5 models
python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 256 --conf configs/yolov6s_finetune.py --data data/dataset.yaml --fuse_ab --device 0,1,2,3,4,5,6,7
# P6 models
python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 128 --conf configs/yolov6s6_finetune.py --data data/dataset.yaml --img 1280 --device 0,1,2,3,4,5,6,7
- fuse_ab: add anchor-based auxiliary branch and use Anchor Aided Training Mode (Not supported on P6 models currently)
- conf: select config file to specify network/optimizer/hyperparameters. We recommend to apply yolov6n/s/m/l_finetune.py when training on your custom dataset.
- data: prepare dataset and specify dataset paths in data.yaml ( COCO, YOLO format coco labels )
- make sure your dataset structure as follows:
โโโ coco
โ โโโ annotations
โ โ โโโ instances_train2017.json
โ โ โโโ instances_val2017.json
โ โโโ images
โ โ โโโ train2017
โ โ โโโ val2017
โ โโโ labels
โ โ โโโ train2017
โ โ โโโ val2017
โ โโโ LICENSE
โ โโโ README.txt
YOLOv6 supports different input resolution modes. For details, see How to Set the Input Size.
</details> <details> <summary>Resume training</summary>If your training process is corrupted, you can resume training by
# single GPU training.
python tools/train.py --resume
# multi GPU training.
python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --resume
Above command will automatically find the latest checkpoint in YOLOv6 directory, then resume the training process.
Your can also specify a checkpoint path to --resume
parameter by
# remember to replace /path/to/your/checkpoint/path to the checkpoint path which you want to resume training.
--resume /path/to/your/checkpoint/path
This will resume from the specific checkpoint you provide.
</details> <details open> <summary> Evaluation</summary>Reproduce mAP on COCO val2017 dataset with 640ร640 or 1280x1280 resolution
# P5 models
python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6s.pt --task val --reproduce_640_eval
# P6 models
python tools/eval.py --data data/coco.yaml --batch 32 --weights yolov6s6.pt --task val --reproduce_640_eval --img 1280
- verbose: set True to print mAP of each classes.
- do_coco_metric: set True / False to enable / disable pycocotools evaluation method.
- do_pr_metric: set True / False to print or not to print the precision and recall metrics.
- config-file: specify a config file to define all the eval params, for example: yolov6n_with_eval_params.py
First, download a pretrained model from the YOLOv6 release or use your trained model to do inference.
Second, run inference with tools/infer.py
# P5 models
python tools/infer.py --weights yolov6s.pt --source img.jpg / imgdir / video.mp4
# P6 models
python tools/infer.py --weights yolov6s6.pt --img 1280 1280 --source img.jpg / imgdir / video.mp4
If you want to inference on local camera or web camera, you can run:
# P5 models
python tools/infer.py --weights yolov6s.pt --webcam --webcam-addr 0
# P6 models
python tools/infer.py --weights yolov6s6.pt --img 1280 1280 --webcam --webcam-addr 0
webcam-addr
can be local camera number id or rtsp address.
- User Guide(zh_CN)
- Train COCO Dataset
- Train custom data
- Test speed
- Tutorial of Quantization for YOLOv6
-
YOLOv6 Training with Amazon Sagemaker: yolov6-sagemaker from ashwincc
-
YOLOv6 NCNN Android app demo: ncnn-android-yolov6 from FeiGeChuanShu
-
YOLOv6 ONNXRuntime/MNN/TNN C++: YOLOv6-ORT, YOLOv6-MNN and YOLOv6-TNN from DefTruth
-
YOLOv6 TensorRT Python: yolov6-tensorrt-python from Linaom1214
-
YOLOv6 web demo on Huggingface Spaces with Gradio.
-
Interactive demo on DagsHub with Streamlit
-
Tutorial: How to train YOLOv6 on a custom dataset <a href="https://colab.research.google.com/drive/1YnbqOinBZV-c9I7fk_UL6acgnnmkXDMM"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
-
YouTube Tutorial: How to train YOLOv6 on a custom dataset
-
Blog post: YOLOv6 Object Detection โ Paper Explanation and Inference
</details>
FAQ๏ผContinuously updated๏ผ
If you have any questions, welcome to join our WeChat group to discuss and exchange.
<p align="center"> <img src="assets/wechat_qrcode.png" align="middle" width = "1000" /> </p>