Awesome
IoUattack
:herb: IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for Visual Object Tracking
Shuai Jia, Yibing Song, Chao Ma and Xiaokang Yang
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
Introduction
<img src="https://github.com/VISION-SJTU/IoUattack/blob/main/demo/intro.png" width='500'/><br/>
We observe that the increase of noise level positively correlates to the decrease of IoU scores, but their directions are not exactly the same.
- Our IoU attack seeks to inject the lowest amount of noisy perturbations at the same contour line of IoU score for each iteration.
- We choose three representative trackers with different structures, SiamRPN++, DiMP and LTMU, respectively.
Results
Result for SiamRPN++ on multiple datasets
VOT2019<br>A / R / EAO | VOT2018<br>A / R / EAO | VOT2016<br>A / R / EAO | VOT2018lt <br> F-score | OTB2015<br>OP / DP | NFS30<br>OP / DP | |
---|---|---|---|---|---|---|
SiamRPN++ | 0.596 / 0.472 / 0.287 | 0.602 / 0.239 / 0.413 | 0.643 / 0.200 / 0.461 | 0.625 | 0.695 / 0.905 | 0.509 / 0.601 |
SiamRPN++(Random) | 0.591 / 0.727 / 0.220 | 0.587 / 0.365 / 0.301 | 0.632 / 0.340 / 0.331 | 0.553 | 0.631 / 0.818 | 0.466 / 0.550 |
SiamRPN++(Attack) | 0.575 / 1.575 / 0.124 | 0.568 / 1.171 / 0.129 | 0.605 / 0.802 / 0.183 | 0.453 | 0.499 / 0.644 | 0.394 / 0.446 |
Result for DiMP on multiple datasets
VOT2019<br>A / R / EAO | VOT2018<br>A / R / EAO | VOT2016<br>A / R / EAO | VOT2018lt <br> F-score | OTB2015<br>OP / DP | NFS30<br>OP / DP | |
---|---|---|---|---|---|---|
DiMP | 0.568 / 0.277 / 0.332 | 0.574 / 0.145 / 0.427 | 0.599 / 0.140 / 0.449 | 0.609 | 0.671 / 0.869 | 0.614 / 0.729 |
DiMP(Random) | 0.567 / 0.373 / 0.284 | 0.560 / 0.202 / 0.363 | 0.592 / 0.168 / 0.404 | 0.555 | 0.659 / 0.860 | 0.591 / 0.710 |
DiMP(Attack) | 0.474 / 0.641 / 0.195 | 0.507 / 0.400 / 0.248 | 0.536 / 0.374 / 0.256 | 0.443 | 0.592 / 0.791 | 0.545 / 0.658 |
Result for LTMU on multiple datasets
VOT2019<br>A / R / EAO | VOT2018<br>A / R / EAO | VOT2016<br>A / R / EAO | VOT2018ltT <br> F-score | OTB2015<br>OP / DP | NFS30<br>OP / DP | |
---|---|---|---|---|---|---|
LTMU | 0.625 / 0.913 / 0.201 | 0.624 / 0.702 / 0.195 | 0.661 / 0.522 / 0.236 | 0.691 | 0.672 / 0.872 | 0.631 / 0.764 |
LTMU(Random) | 0.623 / 1.073 / 0.175 | 0.622 / 0.805 / 0.178 | 0.646 / 0.592 / 0.233 | 0.657 | 0.622 / 0.815 | 0.579 / 0.699 |
LTMU(Attack) | 0.576 / 1.470 / 0.150 | 0.590 / 1.320 / 0.120 | 0.604 / 0.904 / 0.170 | 0.589 | 0.517 / 0.712 | 0.462 / 0.559 |
:herb: All raw results are available. [Google_drive]
Code
:herb: The code of IoU attack for SiamRPN++ is released!!
- You should put the datasets into
pysot/testing_dataset
folder. - Please download the pretrained model and set the environments of SiamPRN++.
- See SiamRPN++ for more details.
Test the original performance on VOT2018 dataset, please use the following command.
cd pysot/experiments/siamrpn_r50_l234_dwxcorr
python -u ../../tools/test_original.py \
--snapshot model.pth \ # model path
--dataset VOT2018 \ # dataset name
--config config.yaml # config file
Test IoU attack on VOT2018 dataset, please use the following command.
cd pysot/experiments/siamrpn_r50_l234_dwxcorr
python -u ../../tools/test_IoU_attack.py \
--snapshot model.pth \ # model path
--dataset VOT2018 \ # dataset name
--config config.yaml # config file
For the adversarial attack of other datasets, you should change the dataset name as mentioned above.
Demo
<img src="https://github.com/VISION-SJTU/IoUattack/blob/main/demo/car_clean.gif" width='300'/> <img src="https://github.com/VISION-SJTU/IoUattack/blob/main/demo/car_attack.gif" width='300'/><br/> <img src="https://github.com/VISION-SJTU/IoUattack/blob/main/demo/legend.png" width='300'/><br/>
Citation
If any part of our paper and code is helpful to your work, please generously citing:
@inproceedings{jia-cvpr21-iouattack,
title={IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for Visual Object Tracking},
author={Jia, Shuai and Song, Yibing and Ma, Chao and Yang, Xiaokang},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2021}
}
Thank you :)
Reference
We choose three representative trackers, SiamRPN++, DiMP and LTMU. The original code of these trackers are list as follows:
- SiamRPN++: https://github.com/STVIR/pysot
- DiMP: https://github.com/visionml/pytracking
- LTMU: https://github.com/Daikenan/LTMU
We also refer to the code of Boundary Attack for IoU attack.
- Boundary Attack: https://github.com/greentfrapp/boundary-attack
Thanks for their wonderful works!
License
Licensed under an MIT license.