Home

Awesome

PCLMix: Weakly Supervised Medical Image Segmentation via Pixel-Level Contrastive Learning and Dynamic Mix Augmentation

Pytorch implementation of our PCLMix (Weakly Supervised Medical Image Segmentation via Pixel-Level Contrastive Learning and Dynamic Mix Augmentation).

News

Congratulations! This work has been accepted by ICIC2024. Due to space limitations, this final submitted document represents an abridged version. The full version of this paper, including more detailed information and data, can be accessed at https://arxiv.org/abs/2405.06288.

Core idea

<img title="" src="./figs/ugpcl.jpg" alt="ugpcl" width="50%" align="center">

Overview of PCLMix

<img src="./figs/overview.jpg" width = "100%" height = "100%" alt="pclmix" align=center>

Visual result

<img src="./figs/visual_result.jpg" width = "100%" height = "100%" alt="visual" align=center>

Dataset

Usage

  1. Clone the project.

    git clone https://github.com/Torpedo2648/PCLMix.git
    
  2. Train the model.

    python train_contrast.py --exp "PCLMix_contrast" --fold fold1 --contrast_weight 0.1 --het_weight 1.0 --unsup_m_weight 1.0 --tf_decoder_weight 0.4 --gpu 0
    python train_contrast.py --exp "PCLMix_contrast" --fold fold2 --contrast_weight 0.1 --het_weight 1.0 --unsup_m_weight 1.0 --tf_decoder_weight 0.4 --gpu 0
    python train_contrast.py --exp "PCLMix_contrast" --fold fold3 --contrast_weight 0.1 --het_weight 1.0 --unsup_m_weight 1.0 --tf_decoder_weight 0.4 --gpu 0
    python train_contrast.py --exp "PCLMix_contrast" --fold fold4 --contrast_weight 0.1 --het_weight 1.0 --unsup_m_weight 1.0 --tf_decoder_weight 0.4 --gpu 0
    python train_contrast.py --exp "PCLMix_contrast" --fold fold5 --contrast_weight 0.1 --het_weight 1.0 --unsup_m_weight 1.0 --tf_decoder_weight 0.4 --gpu 0
    
  3. Test the model.

    python test_cnn.py --exp "PCLMix_contrast" --gpu 0
    

Acknowledgement

The code is modified from TriMix, WSL4MIS and UGPCL.

Citations

@inproceedings{Lei2024PCLMixWS,
  title={PCLMix: Weakly Supervised Medical Image Segmentation via Pixel-Level Contrastive Learning and Dynamic Mix Augmentation},
  author={Yu Lei and Haolun Luo and Lituan Wang and Zhenwei Zhang and Lei Zhang},
  year={2024},
  url={https://api.semanticscholar.org/CorpusID:269740819}
}