Home

Awesome

Weakly-supervised learning for medical image segmentation (WSL4MIS).

Dataset

Requirements

Some important required packages include:

Follow official guidance to install Pytorch.

Usage

  1. Clone this project.
git clone https://github.com/HiLab-git/WSL4MIS
cd WSL4MIS
  1. Data pre-processing os used or the processed data.
cd code
python dataloaders/acdc_data_processing.py
  1. Train the model
cd code
bash train_wss.sh # train model with scribble or dense annotations.
bash train_ssl.sh  # train model with mix-supervision (mask annotations and without annotation).
  1. Test the model
python test_2D_fully.py --sup_type scribble/label --exp ACDC/the trained model fold --model unet
python test_2D_fully_sps.py --sup_type scribble --exp ACDC/the trained model fold --model unet_cct
  1. Training curves on the fold1: Note: pCE means partially cross-entropy, TV means total variation, label denotes supervised by mask, scribble represents just supervised by scribbles.

Implemented methods

Acknowledgement