Home

Awesome

AnimeGANv3

Paper Title: A Novel Double-Tail Generative Adversarial Network for Fast Photo Animation.

Let's use AnimeGANv3 to produce our own animation.

<div align="center">

manuscript Paper Project Page HuggingFace Video twitter LICENSE Github Open In Colab Visitor

</div>

📢 Updates


🎮 Usage

<br/>

🚀 Landscape Demos

:fire: Video to anime (Hayao Style)

<p> <a href="https://youtu.be/EosubeJmAnE"><img src="https://img.shields.io/static/v1?label=YouTube&message=video 1&color=red"/></a> <a href="https://youtu.be/5qLUflWb45E"><img src="https://img.shields.io/static/v1?label=YouTube&message=video 2&color=green"/></a> <a href="https://www.youtube.com/watch?v=iFjiaPlhVm4"><img src="https://img.shields.io/static/v1?label=YouTube&message=video 3&color=pink"/></a> </p>

:art: Photo to Hayao Style


<details> <summary><strong> more surprise</strong>&emsp;👈</summary>





</details>
<br/>

:art: Photo to Shinkai Style


<details> <summary><strong> more surprise</strong>&emsp;👈 </summary>




</details>
<br/>

🚀 Portrait Style Demos

The paper has been completed in 2022. The study of portrait stylization is an extension of the paper.

<details> <summary><strong> Some exhibits </strong>&emsp;👈</summary>

:art: Face to USA cartoon style

https://github.com/user-attachments/assets/9644b1f5-78a4-4dcd-9da0-0186fbf5ab94


:art: Face to Disney cartoon style

v1.9v2.0
<video src="https://github.com/user-attachments/assets/9cc111e9-8a1d-4c22-b0d0-0c430aca98d5" type="video/mp4"> </video><video src="https://github.com/user-attachments/assets/8d7f2be8-14d7-4447-b376-6b0f44a8b8fd" type="video/mp4"> </video>

:art: Face to USA cartoon + Disney style

<a href="https://youtu.be/vJqQQMRYKh0"><img src="https://img.shields.io/static/v1?label=YouTube&message=AnimeGANv3_Trump style v1.5 &color=gold"/></a>

<details> <summary><strong> more surprise</strong>&emsp;👈</summary>

</details>

:art: Face to Arcane style

https://github.com/user-attachments/assets/ab082d32-cc77-4c89-92c1-6a50cfa6a77b


:art: Portrait to comic style

https://github.com/user-attachments/assets/3e999a8e-a331-46f6-863c-c01fd50591c8


:art: Face to Kpop style

https://github.com/user-attachments/assets/3a59537c-fff2-4c86-8462-d53b07ff596b


:art: Portrait to Oil-painting style

<details> <summary><strong> more surprise</strong>&emsp;👈 </summary>

</details>

:art: Portrait to Cute style

https://github.com/user-attachments/assets/0b105ee7-8116-4456-931c-ec196200e288


:art: Portrait to Pixar style

https://github.com/user-attachments/assets/d9c4e931-3b3c-4b03-9531-63d9e391b4df


:art: Portrait to Sketch-0 style

https://github.com/user-attachments/assets/ed3f3511-4583-41d8-aad9-e47fdd2f5c32


:art: Portrait to 8bit style


:art: Face to portrait sketch

Open In Colab

inputFacepanoramic image
<img src="https://github.com/TachibanaYoshino/AnimeGANv3/blob/master/results/AnimeGANv3_Face2portrait_sketch/portrait.jpg" height="60%" width="60%"><img src="https://github.com/TachibanaYoshino/AnimeGANv3/blob/master/results/AnimeGANv3_Face2portrait_sketch/output_onnx.png" height="60%" width="60%"><img src="https://github.com/TachibanaYoshino/AnimeGANv3/blob/master/results/AnimeGANv3_Face2portrait_sketch/output_onnx1.png" height="60%" width="60%">
<img src="https://github.com/TachibanaYoshino/AnimeGANv3/blob/master/results/AnimeGANv3_Face2portrait_sketch/body.jpg" height="60%" width="60%"><img src="https://github.com/TachibanaYoshino/AnimeGANv3/blob/master/results/AnimeGANv3_Face2portrait_sketch/output_onnx3.png" height="60%" width="60%" ><img src="https://github.com/TachibanaYoshino/AnimeGANv3/blob/master/results/AnimeGANv3_Face2portrait_sketch/output_onnx2.png" height="60%" width="60%">
<details> <summary><strong> more surprise</strong>&emsp;👈</summary>

</details> </details> <br/>

🔨 Train

1. Download dataset and pretrained vgg19

  1. vgg19
  2. Hayao dataset
  3. Shinkai dataset
  4. photo dataset

2. Do edge_smooth

    cd tools && python edge_smooth.py --dataset Hayao --img_size 256

3. Do superPixel

    cd tools && python visual_superPixel_seg_image.py

4. Train

    python train.py --style_dataset Hayao --init_G_epoch 5 --epoch 100
<br/>

✒️ Citation

Consider citing as below if you find this repository helpful to your project:

@article{Liu2024dtgan,
  title={A Novel Double-Tail Generative Adversarial Network for Fast Photo Animation},
  author={Gang LIU and Xin CHEN and Zhixiang GAO},
  journal={IEICE Transactions on Information and Systems},
  volume={E107.D},
  number={1},
  pages={72-82},
  year={2024},
  doi={10.1587/transinf.2023EDP7061}
}

:scroll: License

This repo is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications. Permission is granted to use the AnimeGANv3 given that you agree to my license terms. Regarding the request for commercial use, please contact us via email to help you obtain the authorization letter.

:e-mail: Author

Asher Chan asher_chan@foxmail.com