Home

Awesome

Monodepth2-DDP

This is a personal modified PyTorch implementation (not official) for Monodepth2 ("Digging into Self-Supervised Monocular Depth Prediction", ICCV2019).

On the basis of the raw codes in Monodepth2, we add some new features in this version. Now it can support:

Setup

Install the dependencies with:

pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

pip install scikit-image timm thop yacs opencv-python h5py joblib

We experiment with PyTorch 1.9.1, CUDA 11.1, Python 3.7. Other torch versions may also be okay.

Preparing datasets

For KITTI dataset, you can prepare them as done in Monodepth2. Note that we directly train with the raw png images and do not convert them to jpgs. You also need to generate the groundtruth depth maps before training since the code will evaluate after each epoch. For the raw KITTI groundtruth (eigen eval split), run the following command. This will generate gt_depths.npz file in the folder splits/kitti/eigen/.

python export_gt_depth.py --data_path /home/datasets/kitti_raw_data --split eigen

Or if you want to use the improved KITTI groundtruth (eigen_benchmark eval split), please directly download it in this link. And then move the downloaded file (gt_depths.npz) to the folder splits/kitti/eigen_benchmark/.

For NYUv2 dataset, you can download the training and testing datasets as done in StructDepth.

For Make3D dataset, you can download it from here.

For Cityscapes dataset, we follow the instructions in ManyDepth. First Download leftImg8bit_sequence_trainvaltest.zip and camera_trainvaltest.zip in its website, and unzip them into the folder /path/to/cityscapes. Then preprocess CityScapes dataset using the followimg command:

python prepare_cityscapes.py \
--img_height 512 \
--img_width 1024 \
--dataset_dir /home/datasets/cityscapes \
--dump_root /home/datasets/cityscapes_preprocessed \
--seq_length 3 \
--num_threads 8

Remember to modify --dataset_dir and --dump_root to your own. The ground truth depth files are provided by ManyDepth in this link, which were converted from pixel disparities using intrinsics and the known baseline. Download this and unzip into splits/cityscapes

Training

You can see the training scripts in run_kitti.sh, run_nyu.sh and run_cityscapes.sh. Take the KITTI script as an example:

# CUDA_VISIBLE_DEVICES=0 python train.py \

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py \
--data_path /home/datasets/kitti_raw_data \
--dataset kitti \
--log_dir /home/jinfengliu/logs \
--exp_name mono_kitti \
--width 640 \
--height 192 \
--num_scales 4 \
--batch_size 12 \
--lr_sche_type step \
--learning_rate 1e-4 \
--eta_min 5e-6 \
--num_epochs 20 \
--decay_step 15 \
--decay_rate 0.1 \
--log_frequency 400 \
--save_frequency 400 \
--resume 
# --pretrained_path xxxx/ckpt.pth

This is a monocular training example on KITTI. If you want to conduct stereo training or monocular+stereo training, please refer to Monodepth2 to specify --frame_ids and --use_stereo flags.

Use --split flag to specify the training split on KITTI (see Monodepth2), and default is eigen_zhou.

Use CUDA_VISIBLE_DEVICES=0 python train.py to train with a single GPU. If you want to train with two or more GPUs, then use CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py for DDP training.

Use --data_path flag to specify the dataset folder.

Use --log_dir flag to specify the logging folder.

Use --exp_name flag to specify the experiment name.

All output files (checkpoints, logs and tensorboard) will be saved in the directory {log_dir}/{exp_name}.

Use --pretrained_path flag to load a pretrained checkpoint if necessary.

Look at options.py to see the range of other training options.

Evaluation

You can see the evaluation scripts in evaluate.sh.

Depth evaluation

CUDA_VISIBLE_DEVICES=0 python evaluate_depth.py \
--pretrained_path /home/jinfengliu/logs/mono2_official/mono_640x192.pth \
--batch_size 12 \
--kitti_path /home/datasets/kitti_raw_data \
--make3d_path /home/datasets/make3d \
--cityscapes_path /home/datasets/cityscapes \
--nyuv2_path /home/datasets/nyu_v2 
# --use_stereo
# --post_process

This script will evaluate on KITTI (both raw and improved GT), NYUv2, Make3D and Cityscapes together. If you don't want to evaluate on some of these datasets, for example KITTI, just do not specify the corresponding --kitti_path flag. It will only evaluate on the datasets which you have specified a path flag.

If the model is under stereo training, add the --use_stereo flag.

If you want to evalute with post-processing, add the --post_process flag.

Pose evaluation on KITTI Odometry

CUDA_VISIBLE_DEVICES=0 python evaluate_pose.py \
--pretrained_path /home/jinfengliu/logs/mono2_official/mono_640x192.pth \
--data_path /home/datasets/kitti_odometry \
--batch_size 12 \
--eval_split odom_9 

The --eval_split flag can only be odom_9 or odom_10.

Prediction

Prediction for a single image

You can predict scaled disparity for a single image with:

python test_simple.py --image_path folder/test_image.jpg --pretrained_path xxxx/ckpt.pth --save_npy

or, if you are using a stereo-trained model, you can estimate metric depth with:

python test_simple.py --image_path folder/test_image.jpg --pretrained_path xxxx/ckpt.pth --save_npy --pred_metric_depth

The --image_path flag can also be a directory containing several images. In this setting, the script will predict all the images (use --ext to specify png or jpg) in the directory:

python test_simple.py --image_path folder --pretrained_path xxxx/ckpt.pth --ext png --save_npy

Prediction for a video

python test_video.py --image_path folder --pretrained_path xxxx/ckpt.pth --ext png

Here the --image_path flag should be a directory containing several video frames. Note that these video frame files should be named in an ascending numerical order. For example, the first frame is named as 0000.png, the second frame is named as 0001.png, and etc. Then the script will output a GIF file.

Acknowledgement

We have used codes from other wonderful open-source projects, SfMLearner, Monodepth2, ManyDepth and StructDepth. Thanks for their excellent works!