Awesome
PLSSVM - Parallel Least Squares Support Vector Machine
A Support Vector Machine (SVM) is a supervised machine learning model. In its basic form SVMs are used for binary classification tasks. Their fundamental idea is to learn a hyperplane which separates the two classes best, i.e., where the widest possible margin around its decision boundary is free of data. This is also the reason, why SVMs are also called "large margin classifiers". To predict to which class a new, unseen data point belongs, the SVM simply has to calculate on which side of the previously calculated hyperplane the data point lies. This is very efficient since it only involves a single scalar product of the size corresponding to the numer of features of the data set.
<p align="center"> <img alt="strong scaling CPU" src=".figures/support_vector_machine.png" width="50%"> </p>However, normal SVMs suffer in their potential parallelizability. Determining the hyperplane boils down to solving a convex quadratic problem. For this, most SVM implementations use Sequential Minimal Optimization (SMO), an inherently sequential algorithm. The basic idea of this algorithm is that it takes a pair of data points and calculates the hyperplane between them. Afterward, two new data points are selected and the existing hyperplane is adjusted accordingly. This procedure is repeat until a new adjustment would be smaller than some epsilon greater than zero.
Some SVM implementations try to harness some parallelization potential by not drawing point pairs but group of points. In this case, the hyperplane calculation inside this group is parallelized. However, even then modern highly parallel hardware can not be utilized efficiently.
Therefore, we implemented a version of the original proposed SVM called Least Squares Support Vector Machine (LS-SVM). The LS-SVMs reformulated the original problem such that it boils down to solving a system of linear equations. For this kind of problem many highly parallel algorithms and implementations are known. We decided to use the Conjugate Gradient (CG) to solve the system of linear equations.
Since one of our main goals was performance, we parallelized the implicit matrix-vector multiplication inside the CG algorithm. To do so, we use multiple different frameworks to be able to target a broad variety of different hardware platforms. The currently available frameworks (also called backends in our PLSSVM implementation) are:
- OpenMP
- CUDA
- HIP (only tested on AMD GPUs)
- OpenCL
- SYCL (tested implementations are DPC++ and hipSYCL; specifically the versions sycl-nightly/20230110 and hipSYCL commit eb67fc4)
Getting Started
Dependencies
General dependencies:
- a C++17 capable compiler (e.g.
gcc
orclang
) - CMake 3.21 or newer
- cxxopts ≥ v3.0.0, fast_float, {fmt} ≥ v8.1.1, and igor (all four are automatically build during the CMake configuration if they couldn't be found using the respective
find_package
call) - GoogleTest ≥ v1.11.0 if testing is enabled (automatically build during the CMake configuration if
find_package(GTest)
wasn't successful) - doxygen if documentation generation is enabled
- Pybind11 ≥ v2.10.3 if Python bindings are enabled
- OpenMP 4.0 or newer (optional) to speed-up library utilities (like file parsing)
- multiple Python modules used in the utility scripts, to install all modules use
pip install --user -r install/python_requirements.txt
Additional dependencies for the OpenMP backend:
- compiler with OpenMP support
Additional dependencies for the CUDA backend:
- CUDA SDK
- either NVIDIA
nvcc
orclang
with CUDA support enabled
Additional dependencies for the HIP backend:
- working ROCm and HIP installation
- clang with HIP support
Additional dependencies for the OpenCL backend:
- OpenCL runtime and header files
Additional dependencies for the SYCL backend:
Additional dependencies if PLSSVM_ENABLE_TESTING
and PLSSVM_GENERATE_TEST_FILE
are both set to ON
:
Building
Building the library can be done using the normal CMake approach:
git clone https://github.com/SC-SGS/PLSSVM.git
cd PLSSVM
mkdir build && cd build
cmake -DPLSSVM_TARGET_PLATFORMS="..." [optional_options] ..
cmake --build . -j
Target Platform Selection
The CMake option PLSSVM_TARGET_PLATFORMS
is used to determine for which targets the backends should be compiled.
Valid targets are:
cpu
: compile for the CPU; an optional architectural specifications is allowed but only used when compiling with DPC++, e.g.,cpu:avx2
nvidia
: compile for NVIDIA GPUs; at least one architectural specification is necessary, e.g.,nvidia:sm_86,sm_70
amd
: compile for AMD GPUs; at least one architectural specification is necessary, e.g.,amd:gfx906
intel
: compile for Intel GPUs; at least one architectural specification is necessary, e.g.,intel:skl
At least one of the above targets must be present. If the option PLSSVM_TARGET_PLATFORMS
is not present, the targets
are automatically determined using the Python3 utility_scripts/plssvm_target_platforms.py
script (required Python3 dependencies:
argparse
, py-cpuinfo
,
GPUtil
, pyamdgpuinfo
, and
pylspci
).
Note that when using DPC++ only a single architectural specification for cpu
, nvidia
or amd
is allowed.
python3 utility_scripts/plssvm_target_platforms.py --help
usage: plssvm_target_platforms.py [-h] [--quiet]
optional arguments:
-h, --help show this help message and exit
--quiet only output the final PLSSVM_TARGET_PLATFORMS string
Example invocation:
python3 utility_scripts/plssvm_target_platforms.py
Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz: {'avx512': True, 'avx2': True, 'avx': True, 'sse4_2': True}
Found 1 NVIDIA GPU(s):
1x NVIDIA GeForce RTX 3080: sm_86
Possible -DPLSSVM_TARGET_PLATFORMS entries:
cpu:avx512;nvidia:sm_86
or with the --quiet
flag given:
python3 utility_scripts/plssvm_target_platforms.py --quiet
cpu:avx512;intel:dg1
If the architectural information for the requested GPU could not be retrieved, one option would be to have a look at:
- for NVIDIA GPUs: Your GPU Compute Capability
- for AMD GPUs: clang AMDGPU backend usage
- for Intel GPUs and CPUs: Ahead of Time Compilation and Intel graphics processor table
Optional CMake Options
The [optional_options]
can be one or multiple of:
-
PLSSVM_ENABLE_OPENMP_BACKEND=ON|OFF|AUTO
(default:AUTO
):ON
: check for the OpenMP backend and fail if not availableAUTO
: check for the OpenMP backend but do not fail if not availableOFF
: do not check for the OpenMP backend
-
PLSSVM_ENABLE_CUDA_BACKEND=ON|OFF|AUTO
(default:AUTO
):ON
: check for the CUDA backend and fail if not availableAUTO
: check for the CUDA backend but do not fail if not availableOFF
: do not check for the CUDA backend
-
PLSSVM_ENABLE_HIP_BACKEND=ON|OFF|AUTO
(default:AUTO
):ON
: check for the HIP backend and fail if not availableAUTO
: check for the HIP backend but do not fail if not availableOFF
: do not check for the HIP backend
-
PLSSVM_ENABLE_OPENCL_BACKEND=ON|OFF|AUTO
(default:AUTO
):ON
: check for the OpenCL backend and fail if not availableAUTO
: check for the OpenCL backend but do not fail if not availableOFF
: do not check for the OpenCL backend
-
PLSSVM_ENABLE_SYCL_BACKEND=ON|OFF|AUTO
(default:AUTO
):ON
: check for the SYCL backend and fail if not availableAUTO
: check for the SYCL backend but do not fail if not availableOFF
: do not check for the SYCL backend
Attention: at least one backend must be enabled and available!
PLSSVM_ENABLE_ASSERTS=ON|OFF
(default:OFF
): enables custom assertions regardless whether theDEBUG
macro is defined or notPLSSVM_THREAD_BLOCK_SIZE
(default:16
): set a specific thread block size used in the GPU kernels (for fine-tuning optimizations)PLSSVM_INTERNAL_BLOCK_SIZE
(default:6
: set a specific internal block size used in the GPU kernels (for fine-tuning optimizations)PLSSVM_OPENMP_BLOCK_SIZE
(default:64
): set a specific block size used in the OpenMP kernelsPLSSVM_ENABLE_LTO=ON|OFF
(default:ON
): enable interprocedural optimization (IPO/LTO) if supported by the compilerPLSSVM_ENABLE_DOCUMENTATION=ON|OFF
(default:OFF
): enable thedoc
target using doxygenPLSSVM_ENABLE_PERFORMANCE_TRACKING
: enable gathering performance characteristics for the three executables using YAML files; example Python3 scripts to perform performance measurements and to process the resulting YAML files can be found in theutility_scripts/
directory (requires the Python3 modules wrapt-timeout-decorator,pyyaml
, andpint
)PLSSVM_ENABLE_TESTING=ON|OFF
(default:ON
): enable testing using GoogleTest and ctestPLSSVM_ENABLE_LANGUAGE_BINDINGS=ON|OFF
(default:OFF
): enable language bindings
If PLSSVM_ENABLE_TESTING
is set to ON
, the following options can also be set:
PLSSVM_GENERATE_TEST_FILE=ON|OFF
(default:ON
): automatically generate test filesPLSSVM_TEST_FILE_NUM_DATA_POINTS
(default:5000
): the number of data points in the test filePLSSVM_TEST_FILE_NUM_FEATURES
(default:2000
): the number of features per data point in the test file
If PLSSVM_ENABLE_LANGUAGE_BINDINGS
is set to ON
, the following option can also be set:
PLSSVM_ENABLE_PYTHON_BINDINGS=ON|OFF
(default:PLSSVM_ENABLE_LANGUAGE_BINDINGS
): enable Python bindings using Pybind11
If PLSSVM_ENABLE_PYTHON_BINDINGS
is set to ON
, the following options can also be set:
PLSSVM_PYTHON_BINDINGS_PREFERRED_REAL_TYPE
(default:double
): the defaultreal_type
used if the genericplssvm.Model
andplssvm.DataSet
Python classes are usedPLSSVM_PYTHON_BINDINGS_PREFERRED_LABEL_TYPE
(default:std::string
): the defaultlabel_type
used if the genericplssvm.Model
andplssvm.DataSet
Python classes are used
If the SYCL backend is available additional options can be set.
-
PLSSVM_ENABLE_SYCL_HIPSYCL_BACKEND=ON|OFF|AUTO
(default:AUTO
):ON
: check for hipSYCL as implementation for the SYCL backend and fail if not availableAUTO
: check for hipSYCL as implementation for the SYCL backend but do not fail if not availableOFF
: do not check for hipSYCL as implementation for the SYCL backend
-
PLSSVM_ENABLE_SYCL_DPCPP_BACKEND=ON|OFF|AUTO
(default:AUTO
):ON
: check for DPC++ as implementation for the SYCL backend and fail if not availableAUTO
: check for DPC++ as implementation for the SYCL backend but do not fail if not availableOFF
: do not check for DPC++ as implementation for the SYCL backend
To use DPC++ for SYCL simply set the CMAKE_CXX_COMPILER
to the respective DPC++ clang executable during CMake invocation.
If the SYCL implementation is DPC++ the following additional options are available:
PLSSVM_SYCL_BACKEND_DPCPP_USE_LEVEL_ZERO
(default:OFF
): use DPC++'s Level-Zero backend instead of its OpenCL backendPLSSVM_SYCL_BACKEND_DPCPP_GPU_AMD_USE_HIP
(default:ON
): use DPC++'s HIP backend instead of its OpenCL backend for AMD GPUsPLSSVM_SYCL_BACKEND_DPCPP_ENABLE_AOT
(default:ON
): enable Ahead-of-Time (AOT) compilation for the specified target platforms
If more than one SYCL implementation is available the environment variables PLSSVM_SYCL_HIPSYCL_INCLUDE_DIR
and PLSSVM_SYCL_DPCPP_INCLUDE_DIR
must be set to the respective SYCL include paths. Note that those paths must not be present in the CPLUS_INCLUDE_PATH
environment variable or compilation will fail.
PLSSVM_SYCL_BACKEND_PREFERRED_IMPLEMENTATION
(dpcpp
|hipsycl
): specify the preferred SYCL implementation if thesycl_implementation_type
option is set toautomatic
; additional the specified SYCL implementation is used in theplssvm::sycl
namespace, the other implementations are available in theplssvm::dpcpp
andplssvm::hipsycl
namespace respectively
Running the tests
To run the tests after building the library (with PLSSVM_ENABLE_TESTING
set to ON
) use:
ctest
Generating test coverage results
To enable the generation of test coverage reports using locv
the library must be compiled using the custom Coverage
CMAKE_BUILD_TYPE
.
Additionally, it's advisable to use smaller test files to shorten the ctest
step.
cmake -DCMAKE_BUILD_TYPE=Coverage -DPLSSVM_TARGET_PLATFORMS="..." \
-DPLSSVM_TEST_FILE_NUM_DATA_POINTS=100 \
-DPLSSVM_TEST_FILE_NUM_FEATURES=50 ..
cmake --build . -- coverage
The resulting html
coverage report is located in the coverage
folder in the build directory.
Creating the documentation
If doxygen is installed and PLSSVM_ENABLE_DOCUMENTATION
is set to ON
the documentation can be build using
cmake --build . -- doc
The documentation of the current state of the main branch can be found here.
Installing
The library supports the install
target:
cmake --build . -- install
Afterward, the necessary exports should be performed:
export CMAKE_PREFIX_PATH=${CMAKE_INSTALL_PREFIX}/share/plssvm/cmake:${CMAKE_PREFIX_PATH}
export MANPATH=${CMAKE_INSTALL_PREFIX}/share/man:$MANPATH
export PATH=${CMAKE_INSTALL_PREFIX}/bin:${PATH}
export LD_LIBRARY_PATH=${CMAKE_INSTALL_PREFIX}/lib:${LD_LIBRARY_PATH}
Usage
Generating artificial data
The repository comes with a Python3 script (in the utility_scripts/
directory) to simply generate arbitrarily large data sets.
In order to use all functionality, the following Python3 modules must be installed:
argparse
, timeit
,
numpy
, pandas
,
sklearn
, arff
,
matplotlib
, mpl_toolkits
,
and humanize
.
python3 utility_scripts/generate_data.py --help
usage: generate_data.py [-h] --output OUTPUT --format FORMAT [--problem PROBLEM] --samples SAMPLES [--test_samples TEST_SAMPLES] --features FEATURES [--plot]
optional arguments:
-h, --help show this help message and exit
--output OUTPUT the output file to write the samples to (without extension)
--format FORMAT the file format; either arff or libsvm
--problem PROBLEM the problem to solve; one of: blobs, blobs_merged, planes, planes_merged, ball
--samples SAMPLES the number of training samples to generate
--test_samples TEST_SAMPLES
the number of test samples to generate; default: 0
--features FEATURES the number of features per data point
--plot plot training samples; only possible if 0 < samples <= 2000 and 1 < features <= 3
An example invocation generating a data set consisting of blobs with 1000 data points with 200 features each could look like:
python3 generate_data.py --output data_file --format libsvm --problem blobs --samples 1000 --features 200
Training
./plssvm-train --help
LS-SVM with multiple (GPU-)backends
Usage:
./plssvm-train [OPTION...] training_set_file [model_file]
-t, --kernel_type arg set type of kernel function.
0 -- linear: u'*v
1 -- polynomial: (gamma*u'*v + coef0)^degree
2 -- radial basis function: exp(-gamma*|u-v|^2) (default: 0)
-d, --degree arg set degree in kernel function (default: 3)
-g, --gamma arg set gamma in kernel function (default: 1 / num_features)
-r, --coef0 arg set coef0 in kernel function (default: 0)
-c, --cost arg set the parameter C (default: 1)
-e, --epsilon arg set the tolerance of termination criterion (default: 0.001)
-i, --max_iter arg set the maximum number of CG iterations (default: num_features)
-b, --backend arg choose the backend: automatic|openmp|cuda|hip|opencl|sycl (default: automatic)
-p, --target_platform arg choose the target platform: automatic|cpu|gpu_nvidia|gpu_amd|gpu_intel (default: automatic)
--sycl_kernel_invocation_type arg
choose the kernel invocation type when using SYCL as backend: automatic|nd_range|hierarchical (default: automatic)
--sycl_implementation_type arg
choose the SYCL implementation to be used in the SYCL backend: automatic|dpcpp|hipsycl (default: automatic)
--performance_tracking arg
the output YAML file where the performance tracking results are written to; if not provided, the results are dumped to stderr
--use_strings_as_labels use strings as labels instead of plane numbers
--use_float_as_real_type use floats as real types instead of doubles
--verbosity choose the level of verbosity: full|timing|libsvm|quiet (default: full)
-q, --quiet quiet mode (no outputs regardless the provided verbosity level!)
-h, --help print this helper message
-v, --version print version information
--input training_set_file
--model model_file
The help message only print options available based on the CMake invocation.
For example, if CUDA was not available during the build step, it will not show up as possible backend in the description of the --backend
option.
The most minimal example invocation is:
./plssvm-train /path/to/data_file
An example invocation using the CUDA backend could look like:
./plssvm-train --backend cuda --input /path/to/data_file
Another example targeting NVIDIA GPUs using the SYCL backend looks like:
./plssvm-train --backend sycl --target_platform gpu_nvidia --input /path/to/data_file
The --backend=automatic
option works as follows:
- if the
gpu_nvidia
target is available, check for existing backends in ordercuda
🠦hip
🠦opencl
🠦sycl
- otherwise, if the
gpu_amd
target is available, check for existing backends in orderhip
🠦opencl
🠦sycl
- otherwise, if the
gpu_intel
target is available, check for existing backends in ordersycl
🠦opencl
- otherwise, if the
cpu
target is available, check for existing backends in ordersycl
🠦opencl
🠦openmp
Note that during CMake configuration it is guaranteed that at least one of the above combinations does exist.
The --target_platform=automatic
option works for the different backends as follows:
OpenMP
: always selects a CPUCUDA
: always selects an NVIDIA GPU (if no NVIDIA GPU is available, throws an exception)HIP
: always selects an AMD GPU (if no AMD GPU is available, throws an exception)OpenCL
: tries to find available devices in the following order: NVIDIA GPUs 🠦 AMD GPUs 🠦 Intel GPUs 🠦 CPUSYCL
: tries to find available devices in the following order: NVIDIA GPUs 🠦 AMD GPUs 🠦 Intel GPUs 🠦 CPU
The --sycl_kernel_invocation_type
and --sycl_implementation_type
flags are only used if the --backend
is sycl
, otherwise a warning is emitted on stderr
.
If the --sycl_kernel_invocation_type
is automatic
, the nd_range
invocation type is always used, except for hipSYCL on CPUs where the hierarchical formulation is used instead (if hipSYCL wasn't build with omp.accelerated
).
If the --sycl_implementation_type
is automatic
, the used SYCL implementation is determined by the PLSSVM_SYCL_BACKEND_PREFERRED_IMPLEMENTATION
cmake flag.
Predicting
./plssvm-preidct --help
LS-SVM with multiple (GPU-)backends
Usage:
./plssvm-preidct [OPTION...] test_file model_file [output_file]
-b, --backend arg choose the backend: automatic|openmp|cuda|hip|opencl|sycl (default: automatic)
-p, --target_platform arg choose the target platform: automatic|cpu|gpu_nvidia|gpu_amd|gpu_intel (default: automatic)
--sycl_implementation_type arg
choose the SYCL implementation to be used in the SYCL backend: automatic|dpcpp|hipsycl (default: automatic)
--performance_tracking arg
the output YAML file where the performance tracking results are written to; if not provided, the results are dumped to stderr
--use_strings_as_labels use strings as labels instead of plane numbers
--use_float_as_real_type use floats as real types instead of doubles
--verbosity choose the level of verbosity: full|timing|libsvm|quiet (default: full)
-q, --quiet quiet mode (no outputs regardless the provided verbosity level!)
-h, --help print this helper message
-v, --version print version information
--test test_file
--model model_file
--output output_file
An example invocation could look like:
./plssvm-preidct --backend cuda --test /path/to/test_file --model /path/to/model_file
Another example targeting NVIDIA GPUs using the SYCL backend looks like:
./plssvm-preidct --backend sycl --target_platform gpu_nvidia --test /path/to/test_file --model /path/to/model_file
The --target_platform=automatic
and --sycl_implementation_type
flags work like in the training (./plssvm-train
) case.
Scaling
LS-SVM with multiple (GPU-)backends
Usage:
./plssvm-scale [OPTION...] input_file [scaled_file]
-l, --lower arg lower is the lowest (minimal) value allowed in each dimension (default: -1)
-u, --upper arg upper is the highest (maximal) value allowed in each dimension (default: 1)
-f, --format arg the file format to output the scaled data set to (default: libsvm)
-s, --save_filename arg the file to which the scaling factors should be saved
-r, --restore_filename arg the file from which previous scaling factors should be loaded
--performance_tracking arg
the output YAML file where the performance tracking results are written to; if not provided, the results are dumped to stderr
--use_strings_as_labels use strings as labels instead of plane numbers
--use_float_as_real_type use floats as real types instead of doubles
--verbosity choose the level of verbosity: full|timing|libsvm|quiet (default: full)
-q, --quiet quiet mode (no outputs regardless the provided verbosity level!)
-h, --help print this helper message
-v, --version print version information
--input input_file
--scaled scaled_file
An example invocation could look like:
./plssvm-scale -l -0.5 -u 1.5 --input /path/to/input_file --scaled /path/to/scaled_file
An example invocation to scale a train and test file in the same way looks like:
./plssvm-scale -l -1.0 -u 1.0 -s scaling_parameter.txt train_file.libsvm train_file_scaled.libsvm
./plssvm-scale -r scaling_parameter.txt test_file.libsvm test_file_scaled.libsvm
For more information see the man
pages for plssvm-train
, plssvm-predict
, and plssvm-scale
(which are installed via cmake --build . -- install
).
Example code for usage as library
A simple C++ program (main.cpp
) using this library could look like:
#include "plssvm/core.hpp"
#include <exception>
#include <iostream>
#include <vector>
int main() {
try {
// create a new C-SVM parameter set, explicitly overriding the default kernel function
const plssvm::parameter params{ plssvm::kernel_type = plssvm::kernel_function_type::polynomial };
// create two data sets: one with the training data scaled to [-1, 1]
// and one with the test data scaled like the training data
const plssvm::data_set<double> train_data{ "train_file.libsvm", { -1.0, 1.0 } };
const plssvm::data_set<double> test_data{ "test_file.libsvm", train_data.scaling_factors()->get() };
// create C-SVM using the default backend and the previously defined parameter
const auto svm = plssvm::make_csvm(params);
// fit using the training data, (optionally) set the termination criterion
const plssvm::model model = svm->fit(train_data, plssvm::epsilon = 10e-6);
// get accuracy of the trained model
const double model_accuracy = svm->score(model);
std::cout << "model accuracy: " << model_accuracy << std::endl;
// predict the labels
const std::vector<int> label = svm->predict(model, test_data);
// write model file to disk
model.save("model_file.libsvm");
} catch (const plssvm::exception &e) {
std::cerr << e.what_with_loc() << std::endl;
} catch (const std::exception &e) {
std::cerr << e.what() << std::endl;
}
return 0;
}
With a corresponding minimal CMake file:
cmake_minimum_required(VERSION 3.16)
project(LibraryUsageExample
LANGUAGES CXX)
find_package(plssvm CONFIG REQUIRED)
add_executable(prog main.cpp)
target_compile_features(prog PUBLIC cxx_std_17)
target_link_libraries(prog PUBLIC plssvm::plssvm-all)
Using the Python bindings
Roughly the same can be achieved using our Python bindings with the following Python script:
import plssvm
try:
# create a new C-SVM parameter set, explicitly overriding the default kernel function
params = plssvm.Parameter(kernel_type=plssvm.KernelFunctionType.POLYNOMIAL)
# create two data sets: one with the training data scaled to [-1, 1]
# and one with the test data scaled like the training data
train_data = plssvm.DataSet("train_data.libsvm", scaling=(-1.0, 1.0))
test_data = plssvm.DataSet("test_data.libsvm", scaling=train_data.scaling_factors())
# create C-SVM using the default backend and the previously defined parameter
svm = plssvm.CSVM(params)
# fit using the training data, (optionally) set the termination criterion
model = svm.fit(train_data, epsilon=10e-6)
# get accuracy of the trained model
model_accuracy = svm.score(model)
print("model accuracy: {}".format(model_accuracy))
# predict labels
label = svm.predict(model, test_data)
# write model file to disk
model.save("model_file.libsvm")
except plssvm.PLSSVMError as e:
print(e)
except RuntimeError as e:
print(e)
Note: it may be necessary to set PYTHONPATH
to the lib
folder in the PLSSVM install path.
We also provide Python bindings for a plssvm.SVC
class that offers the same interface as the sklearn.svm.SVC
class.
Note that currently not all functionality has been implemented in PLSSVM.
The respective functions will throw a Python AttributeError
if called.
Citing PLSSVM
If you use PLSSVM in your research, we kindly request you to cite:
@inproceedings{9835379,
author={Van Craen, Alexander and Breyer, Marcel and Pfl\"{u}ger, Dirk},
booktitle={2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)},
title={PLSSVM: A (multi-)GPGPU-accelerated Least Squares Support Vector Machine},
year={2022},
volume={},
number={},
pages={818-827},
doi={10.1109/IPDPSW55747.2022.00138}
}
For a full list of all publications involving PLSSVM see our Wiki Page.
License
The PLSSVM library is distributed under the MIT license.