Awesome
State-of-the-art result for all Machine Learning Problems
LAST UPDATE: 20th Februray 2019
NEWS: I am looking for a Collaborator esp who does research in NLP, Computer Vision and Reinforcement learning. If you are not a researcher, but you are willing, contact me. Email me: yxt.stoaml@gmail.com
This repository provides state-of-the-art (SoTA) results for all machine learning problems. We do our best to keep this repository up to date. If you do find a problem's SoTA result is out of date or missing, please raise this as an issue (with this information: research paper name, dataset, metric, source code and year). We will fix it immediately.
You can also submit this Google Form if you are new to Github.
This is an attempt to make one stop for all types of machine learning problems state of the art result. I can not do this alone. I need help from everyone. Please submit the Google form/raise an issue if you find SOTA result for a dataset. Please share this on Twitter, Facebook, and other social media.
This summary is categorized into:
- Supervised Learning
- Semi-supervised Learning
- Computer Vision
- Unsupervised Learning
- Speech
- Computer Vision
- NLP
- Transfer Learning
- Reinforcement Learning
Supervised Learning
NLP
1. Language Modelling
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> </tr> <tr> <td><a href='https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf'> Language Models are Unsupervised Multitask Learners </a></td> <td align="left"><ul><li> PTB </li><li> WikiText-2 </li></ul></td> <td align="left"><ul><li> Perplexity: 35.76 </li><li> Perplexity: 18.34 </li></ul></td> <td align="left"><a href='https://github.com/openai/gpt-2'>Tensorflow </a></td> <td align="left">2019</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1711.03953.pdf'>BREAKING THE SOFTMAX BOTTLENECK: A HIGH-RANK RNN LANGUAGE MODEL </a></td> <td align="left"><ul><li> PTB </li><li> WikiText-2 </li></ul></td> <td align="left"><ul><li> Perplexity: 47.69 </li><li> Perplexity: 40.68 </li></ul></td> <td align="left"><a href='https://github.com/zihangdai/mos'>Pytorch </a></td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1709.07432.pdf'>DYNAMIC EVALUATION OF NEURAL SEQUENCE MODELS </a></td> <td align="left"><ul><li> PTB </li><li> WikiText-2 </li></ul></td> <td align="left"><ul><li> Perplexity: 51.1 </li><li> Perplexity: 44.3 </li></ul></td> <td align="left"><a href='https://github.com/benkrause/dynamic-evaluation'>Pytorch </a></td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1708.02182.pdf'>Averaged Stochastic Gradient Descent <br/> with Weight Dropped LSTM or QRNN </a></td> <td align="left"><ul><li> PTB </li><li> WikiText-2 </li></ul></td> <td align="left"><ul><li> Perplexity: 52.8 </li><li> Perplexity: 52.0 </li></ul></td> <td align="left"><a href='https://github.com/salesforce/awd-lstm-lm'>Pytorch </a></td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1711.00066.pdf'>FRATERNAL DROPOUT </a></td> <td align="left"><ul><li> PTB </li><li> WikiText-2 </li></ul></td> <td align="left"><ul><li> Perplexity: 56.8 </li><li> Perplexity: 64.1 </li></ul></td> <td align="left"> <a href='https://github.com/kondiz/fraternal-dropout'> Pytorch </a> </td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1703.10722.pdf'>Factorization tricks for LSTM networks </a></td> <td align="left">One Billion Word Benchmark</td> <td align="left"> Perplexity: 23.36</td> <td align="left"><a href='https://github.com/okuchaiev/f-lm'>Tensorflow </a></td> <td align="left">2017</td> </tr> </tbody> </table>2. Machine Translation
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> </tr> <tr> <td><a href='https://arxiv.org/pdf/1808.09381v2.pdf'> Understanding Back-Translation at Scale </a></td> <td align="left"> <ul><li>WMT 2014 English-to-French </li><li>WMT 2014 English-to-German </li></ul></td> <td align="left"> <ul><li> BLEU: 45.6 </li><li> BLEU: 35.0 </li></ul> </td> <td align="left"> <ul><li><a href='https://github.com/pytorch/fairseq'>PyTorch</a></li></ul></td> <td align="left">2018</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1711.02132.pdf'>WEIGHTED TRANSFORMER NETWORK FOR MACHINE TRANSLATION</a></td> <td align="left"> <ul><li>WMT 2014 English-to-French </li><li>WMT 2014 English-to-German </li></ul></td> <td align="left"> <ul><li> BLEU: 41.4 </li><li> BLEU: 28.9 </li></ul> </td> <td align="left"> <ul><li><a href=''>NOT FOUND</a></li></ul></td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/abs/1706.03762'>Attention Is All You Need</a></td> <td align="left"> <ul><li>WMT 2014 English-to-French </li><li>WMT 2014 English-to-German </li></ul></td> <td align="left"> <ul><li> BLEU: 41.0 </li><li> BLEU: 28.4 </li></ul> </td> <td align="left"> <ul><li><a href='https://github.com/jadore801120/attention-is-all-you-need-pytorch'>PyTorch</a> </li><li> <a href='https://github.com/tensorflow/tensor2tensor'>Tensorflow</a></li></ul></td> <td align="left">2017</td> </tr> <tr> <td><a href='https://einstein.ai/static/images/pages/research/non-autoregressive-neural-mt.pdf'>NON-AUTOREGRESSIVE NEURAL MACHINE TRANSLATION</a></td> <td align="left"> <ul><li> WMT16 Ro→En </li></ul></td> <td align="left"> <ul><li> BLEU: 31.44 </li></ul> </td> <td align="left"><ul><li><a href='https://github.com/salesforce/nonauto-nmt'>PyTorch</a></ul></li></td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/abs/1703.04887'> Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets</a></td> <td align="left"> <ul><li>NIST02 </li><li>NIST03 </li><li>NIST04 </li><li>NIST05 </li></ul></td> <td align="left"><li>38.74 </li><li>36.01 </li><li> 37.54 </li><li>33.76 </li></ul </td> <td align="left"> <ul><li><a href='https://github.com/ngohoanhkhoa/GAN-NMT'>NMTPY</a> </li></ul></td> <td align="left">2017</td> </tr> </tbody> </table>3. Text Classification
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> </tr> <tr> <td><a href='https://arxiv.org/abs/1705.09207'> Learning Structured Text Representations </a></td> <td align="left">Yelp</td> <td align="left">Accuracy: 68.6</td> <td align="left"> <ul><li><a href='https://github.com/nlpyang/structured'>Tensorflow</a></ul></li></td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1710.00519.pdf'>Attentive Convolution</a></td> <td align="left">Yelp</td> <td align="left">Accuracy: 67.36</td> <td align="left"> <ul><li><a href='https://github.com/yinwenpeng/Attentive_Convolution'>Theano</a></ul></li></td> <td align="left">2017</td> </tr> </tbody> </table>4. Natural Language Inference
Leader board:
Stanford Natural Language Inference (SNLI)
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> </tr> <tr> <td><a href='https://arxiv.org/pdf/1709.04348.pdf'> NATURAL LANGUAGE INFERENCE OVER INTERACTION SPACE </a></td> <td align="left">Stanford Natural Language Inference (SNLI)</td> <td align="left">Accuracy: 88.9</td> <td align="left"><a href='https://github.com/YichenGong/Densely-Interactive-Inference-Network'>Tensorflow</a> </td> <td align="left">2017</td> </tr> <tr> <td><a href=https://arxiv.org/pdf/1810.04805.pdf> BERT-LARGE (ensemble) </a></td> <td align="left">Multi-Genre Natural Language Inference (MNLI)</td> <td align="left"><ul><li>Matched accuracy: 86.7</li><li>Mismatched accuracy: 85.9</td> <td align="left"><ul><li><a href='https://github.com/google-research/bert'>Tensorflow</a></li><li><a href='https://github.com/huggingface/pytorch-pretrained-BERT'>PyTorch</a></li> </td> <td align="left">2018</td> </tr> </tbody> </table>5. Question Answering
Leader Board
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> </tr> <tr> <td><a href='https://arxiv.org/pdf/1810.04805.pdf'> BERT-LARGE (ensemble) </a></td> <td align="left">The Stanford Question Answering Dataset</td> <td align="left"><ul><li> Exact Match: 87.4 </li><li> F1: 93.2 </li></ul></td> <td align="left"><ul><li><a href='https://github.com/google-research/bert'>Tensorflow</a></li><li><a href='https://github.com/huggingface/pytorch-pretrained-BERT'>PyTorch</a> </td> <td align="left">2018</td> </tr> </tbody> </table>6. Named entity recognition
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> </tr> <tr> <td><a href='https://arxiv.org/pdf/1710.11027.pdf'>Named Entity Recognition in Twitter using Images and Text </a></td> <td align="left">Ritter</td> <td align="left"><ul><li> F-measure: 0.59 </li></ul></td> <td align="left"><a href=''>NOT FOUND</a> </td> <td align="left">2017</td> </tr> </tbody> </table>7. Abstractive Summarization
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
Cutting-off redundant repeating generations </br> for neural abstractive summarization | <ul><li>DUC-2004</li><li>Gigaword</li></ul> | <ul><li>DUC-2004</li><ul><li> ROUGE-1: 32.28 </li><li> ROUGE-2: 10.54 </li><li>ROUGE-L: 27.80 </li></ul><li>Gigaword</li><ul><li> ROUGE-1: 36.30 </li><li> ROUGE-2: 17.31 </li><li>ROUGE-L: 33.88 </li></ul></ul> | NOT YET AVAILABLE | 2017 |
Convolutional Sequence to Sequence | <ul><li>DUC-2004</li><li>Gigaword</li></ul> | <ul><li>DUC-2004</li><ul><li> ROUGE-1: 33.44 </li><li> ROUGE-2: 10.84 </li><li>ROUGE-L: 26.90 </li></ul><li>Gigaword</li><ul><li> ROUGE-1: 35.88 </li><li> ROUGE-2: 27.48 </li><li>ROUGE-L: 33.29 </li></ul></ul> | PyTorch | 2017 |
8. Dependency Parsing
Research Paper | Datasets | Metric | Source Code | Year |
---|---|---|---|---|
Globally Normalized Transition-Based Neural Networks | <ul><li>Final CoNLL ’09 dependency parsing </li></ul> | <ul><li> 94.08% UAS accurancy</li> <li>92.15% LAS accurancy</li></ul> | <ul><li>SyntaxNet </li></ul> | <ul><li>2017</li></ul> |
Computer Vision
1. Classification
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> </tr> <tr> <td><a href='https://arxiv.org/pdf/1710.09829.pdf'> Dynamic Routing Between Capsules </a></td> <td align="left"> <ul><li> MNIST </li></ul> </td> <td align="left"> <ul><li> Test Error: 0.25±0.005 </li></ul> </td> <td align="left"> <ul><li> <a href='https://github.com/Sarasra/models/tree/master/research/capsules'>Official Implementation</a> </li><li> <a href='https://github.com/gram-ai/capsule-networks'>PyTorch</a> </li><li> <a href='https://github.com/naturomics/CapsNet-Tensorflow'>Tensorflow</a> </li><li> <a href='https://github.com/XifengGuo/CapsNet-Keras'>Keras</a> </li><li> <a href='https://github.com/soskek/dynamic_routing_between_capsules'>Chainer</a> </li> <li> <a href='https://github.com/loretoparisi/CapsNet'>List of all implementations</a> </li> </ul> </td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1102.0183.pdf'> High-Performance Neural Networks for Visual Object Classification </a></td> <td align="left"> <ul><li> NORB </li></ul></td> <td align="left"> <ul><li> Test Error: 2.53 ± 0.40 </li></ul> </td> <td align="left"> <ul><li><a href=''>NOT FOUND</a></ul></li> </td> <td align="left">2011</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1811.06965.pdf'>Giant AmoebaNet with GPipe</a></td> <td align="left"> <ul><li> CIFAR-10 </li> <li> CIFAR-100</li><li> ImageNet-1k</li><li> ...</li></ul></td> <td align="left"> <ul><li> Test Error: 1.0% </li> <li> Test Error: 8.7% </li><li> Top-1 Error 15.7</li><li> ...</li></ul> </td> <td align="left"> <ul><li> <a href=''>NOT FOUND</a> </li></ul> </td> <td align="left">2018</td> </tr> <tr> <td><a href='https://openreview.net/pdf?id=S1NHaMW0b'>ShakeDrop regularization </a></td> <td align="left"> <ul><li> CIFAR-10 </li> <li> CIFAR-100</li></ul></td> <td align="left"> <ul><li> Test Error: 2.31% </li> <li> Test Error: 12.19% </li></ul> </td> <td align="left"> <ul><li> <a href=''>NOT FOUND</a> </li></ul> </td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1611.05431.pdf'>Aggregated Residual Transformations for Deep Neural Networks </a></td> <td align="left"> <ul><li> CIFAR-10 </li></ul></td> <td align="left"> <ul><li> Test Error: 3.58% </li></ul> </td> <td align="left"> <ul><li> <a href='https://github.com/facebookresearch/ResNeXt'>PyTorch</a> </li></ul> </td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/abs/1708.04896'> Random Erasing Data Augmentation </a></td> <td align="left"> <ul><li> CIFAR-10 </li> <li> CIFAR-100 </li> <li> Fashion-MNIST </li> </ul></td> <td align="left"> <ul><li> Test Error: 3.08% </li> <li> Test Error: 17.73% </li> <li> Test Error: 3.65% </li> </ul> </td> <td align="left"> <a href='https://github.com/zhunzhong07/Random-Erasing'> Pytorch </td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/abs/1709.07634'> EraseReLU: A Simple Way to Ease the Training of Deep Convolution Neural Networks </a></td> <td align="left"> <ul><li> CIFAR-10 </li> <li> CIFAR-100 </li> </ul></td> <td align="left"> <ul><li> Test Error: 3.56% </li> <li> Test Error: 16.53% </li> </ul> </td> <td align="left"> <a href='https://github.com/D-X-Y/EraseReLU'> Pytorch </td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1710.09829.pdf'> Dynamic Routing Between Capsules </a></td> <td align="left"> <ul><li> MultiMNIST </li></ul></td> <td align="left"> <ul><li> Test Error: 5% </li></ul> </td> <td align="left"> <ul><li> <a href='https://github.com/gram-ai/capsule-networks'>PyTorch</a> </li><li> <a href='https://github.com/naturomics/CapsNet-Tensorflow'>Tensorflow</a> </li><li> <a href='https://github.com/XifengGuo/CapsNet-Keras'>Keras</a> </li><li> <a href='https://github.com/soskek/dynamic_routing_between_capsules'>Chainer</a> </li><li> <a href='https://github.com/loretoparisi/CapsNet'>List of all implementations</a> </li></ul> </td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1707.07012.pdf'>Learning Transferable Architectures for Scalable Image Recognition</a></td> <td align="left"> <ul><li> ImageNet-1k </li></ul></td> <td align="left"> <ul><li> Top-1 Error:17.3 </li></ul> </td> <td align="left"> <ul><li> <a href='https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet'>Tensorflow</a> </li></ul> </td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1709.01507.pdf'>Squeeze-and-Excitation Networks </a></td> <td align="left"> <ul><li> ImageNet-1k </li></ul></td> <td align="left"> <ul><li> Top-1 Error: 18.68 </li></ul> </td> <td align="left"> <ul><li> <a href='https://github.com/hujie-frank/SENet'>CAFFE</a> </li></ul> </td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1611.05431.pdf'>Aggregated Residual Transformations for Deep Neural Networks </a></td> <td align="left"> <ul><li> ImageNet-1k </li></ul></td> <td align="left"> <ul><li> Top-1 Error: 20.4% </li></ul> </td> <td align="left"> <ul><li> <a href='https://github.com/facebookresearch/ResNeXt'>Torch</a> </li></ul> </td> <td align="left">2016</td> </tr> </tbody> </table>2. Instance Segmentation
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> </tr> <tr> <td><a href='https://arxiv.org/pdf/1703.06870.pdf'>Mask R-CNN</a></td> <td align="left"> <ul><li> COCO </li></ul></td> <td align="left"> <ul><li> Average Precision: 37.1% </li></ul> </td> <td align="left"> <ul><li> <a href='https://github.com/facebookresearch/Detectron'>Detectron (Official Version)</a> </li><li> <a href='https://github.com/TuSimple/mx-maskrcnn'>MXNet</a> </li><li> <a href='https://github.com/matterport/Mask_RCNN'>Keras</a> </li><li> <a href='https://github.com/CharlesShang/FastMaskRCNN'>TensorFlow </a> </li></ul> </td> <td align="left">2017</td> </tr> </tbody> </table>3. Visual Question Answering
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> </tr> <tr> <td><a href='https://arxiv.org/abs/1708.02711'>Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge</a></td> <td align="left"> <ul><li> VQA </li></ul></td> <td align="left"> <ul><li> Overall score: 69 </li></ul> </td> <td align="left"> <ul><li> <a href=''>NOT FOUND</a> </li></ul> </li></ul> </td> <td align="left">2017</td> </tr> </tbody> </table>4. Person Re-identification
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> </tr> <tr> <td><a href='https://arxiv.org/abs/1708.04896'> Random Erasing Data Augmentation </a></td> <td align="left"> <ul><li> <a href='http://www.liangzheng.org/Project/project_reid.html'> Market-1501 </a> </li> <li> <a href='https://github.com/zhunzhong07/person-re-ranking'> CUHK03-new-protocol </a> </li> <li> <a href='https://github.com/layumi/DukeMTMC-reID_evaluation'> DukeMTMC-reID </a> </li> </ul></td> <td align="left"> <ul><li> Rank-1: 89.13 mAP: 83.93 </li> <li> Rank-1: 84.02 mAP: 78.28 </li> <li> labeled (Rank-1: 63.93 mAP: 65.05) detected (Rank-1: 64.43 mAP: 64.75) </li> </ul> </td> <td align="left"> <a href='https://github.com/zhunzhong07/Random-Erasing'> Pytorch </td> <td align="left">2017</td> </tr> </tbody> </table>Speech
1. ASR
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> </tr> <tr> <td><a href='https://arxiv.org/pdf/1708.06073.pdf'>The Microsoft 2017 Conversational Speech Recognition System</a></td> <td align="left"> <ul><li> Switchboard Hub5'00 </li></ul></td> <td align="left"> <ul><li> WER: 5.1 </li></ul> </td> <td align="left"> <ul><li> <a href=''>NOT FOUND</a></li></ul> </td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1801.00059.pdf'>The CAPIO 2017 Conversational Speech Recognition System</a></td> <td align="left"> <ul><li> Switchboard Hub5'00 </li></ul></td> <td align="left"> <ul><li> WER: 5.0 </li></ul> </td> <td align="left"> <ul><li> <a href=''>NOT FOUND</a></li></ul> </td> <td align="left">2017</td> </tr> </tbody> </table>Semi-supervised Learning
Computer Vision
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> </tr> <tr> <td><a href='https://arxiv.org/pdf/1507.00677.pdf'> DISTRIBUTIONAL SMOOTHINGWITH VIRTUAL ADVERSARIAL TRAINING </a></td> <td align="left"> <ul><li> SVHN </li><li> NORB </li></ul></td> <td align="left"> <ul><li> Test error: 24.63 </li><li> Test error: 9.88 </li></ul> </td> <td align="left"> <a href='https://github.com/takerum/vat'>Theano</a></td> <td align="left">2016</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1704.03976.pdf'> Virtual Adversarial Training: a Regularization Method for Supervised and Semi-supervised Learning </a></td> <td align="left"> <ul><li> MNIST </li></ul></td> <td align="left"> <ul><li> Test error: 1.27 </li></ul> </td> <td align="left"> <ul><li><a href=''>NOT FOUND</a></ul></li> </td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1706.08249.pdf'> Few Shot Object Detection </a></td> <td align="left"> <ul><li> VOC2007 </li><li> VOC2012 </li></ul></td> <td align="left"> <ul><li> mAP : 41.7 </li><li> mAP : 35.4 </li></ul> </td> <td align="left"> <ul><li><a href=''>NOT FOUND</a></ul></li> </td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1701.07717.pdf'> Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro </a></td> <td align="left"> <ul><li> <a href='http://www.liangzheng.org/Project/project_reid.html'> Market-1501 </a> </li> <li> CUHK-03 </li> <li> <a href='https://github.com/layumi/DukeMTMC-reID_evaluation'> DukeMTMC-reID </a> </li> <li> <a href='http://www.vision.caltech.edu/visipedia/CUB-200-2011.html'> CUB-200-2011 </a></li></ul></td> <td align="left"> <ul><li> Rank-1: 83.97 mAP: 66.07 </li> <li> Rank-1: 84.6 mAP: 87.4 </li> <li> Rank-1: 67.68 mAP: 47.13 </li> <li> Test Accuracy: 84.4 </li> </ul> </td> <td align="left"> <a href='https://github.com/layumi/Person-reID_GAN'> Matconvnet </td> <td align="left">2017</td> </tr> </tbody> </table>Unsupervised Learning
Computer Vision
1. Generative Model
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> </tr> <tr> <td><a href='http://research.nvidia.com/sites/default/files/publications/karras2017gan-paper-v2.pdf'> PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION </a></td> <td align="left">Unsupervised CIFAR 10</td> <td align="left">Inception score: 8.80 </td> <td align="left"> <a href='https://github.com/tkarras/progressive_growing_of_gans'>Theano</a></td> <td align="left">2017</td> </tr> </tbody> </table>NLP
Machine Translation
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> <tr> <td><a href='https://arxiv.org/pdf/1711.00043.pdf'>UNSUPERVISED MACHINE TRANSLATION USING MONOLINGUAL CORPORA ONLY</a></td> <td align="left"> <ul><li> Multi30k-Task1(en-fr fr-en de-en en-de) </li></ul></td> <td align="left"> <ul><li> BLEU:(32.76 32.07 26.26 22.74) </li></ul> </td> <td align="left"><ul><li><a href=''>NOT FOUND</a></ul></li></td> <td align="left">2017</td> </tr> <tr> <td><a href='https://arxiv.org/pdf/1804.09057.pdf'>Unsupervised Neural Machine Translation with Weight Sharing</a></td> <td align="left"> <ul><li> WMT14(en-fr fr-en) </li><li> WMT16 (de-en en-de) </li></ul></td> <td align="left"> <ul><li> BLEU:(16.97 15.58) </li> <li> BLEU:(14.62 10.86) </li></ul> </td> <td align="left"><ul><li><a href=''>NOT FOUND</a></ul></li></td> <td align="left">2018</td> </tr> </tbody> </table>Transfer Learning
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> <tr> <td><a href='https://arxiv.org/pdf/1706.05137.pdf'>One Model To Learn Them All</a></td> <td align="left"> <ul><li> WMT EN → DE </li><li> WMT EN → FR (BLEU) </li><li> ImageNet (top-5 accuracy) </li></ul></td> <td align="left"> <ul><li> BLEU: 21.2 </li> <li> BLEU:30.5 </li><li> 86% </li></ul> </td> <td align="left"><ul><li><a href='https://github.com/tensorflow/tensor2tensor'>Tensorflow</a></ul></li></td> <td align="left">2017</td> </tr> </tbody> </table>Reinforcement Learning
<table> <tbody> <tr> <th width="30%">Research Paper</th> <th align="center" width="20%">Datasets</th> <th align="center" width="20%">Metric</th> <th align="center" width="20%">Source Code</th> <th align="center" width="10%">Year</th> <tr> <td><a href='http://www.gwern.net/docs/rl/2017-silver.pdf'>Mastering the game of Go without human knowledge</a></td> <td align="left"> the game of Go </td> <td align="left"> ElO Rating: 5185</td> <td align="left"><ul><li><a href=https://github.com/gcp/leela-zero>C++</a></ul></li></td> <td align="left">2017</td> </tr> </tbody> </table>Email: yxt.stoaml@gmail.com