Awesome
UFPMP-Det: Toward Accurate and Efficient Object Detection on Drone Imagery
The repo is the official implementation of UFPMP-Det.
The code of UFP module is at mmdet/core/ufp
The code of MP-Det is at mmdet/models/dense_heads/mp_head.py
The config of our project is at configs/UFPMP-Det
Install
- This repo is implemented based on mmdetection. Please install it according to get_start.md.
-
pip install nltk pip install albumentations
Quickstart
We provide the Dataset(COCO Format) as follows:
- VisDrone:链接:https://pan.baidu.com/s/1FfAsAApHZruucO5A2QgQAg 提取码:qrvs
- UAVDT:链接:链接:https://pan.baidu.com/s/1KLmU5BBWwgtFbuZa7QWavw 提取码:z08x
We provide the checkpoint as follows:
- VisDrone Coarse-Det:链接: https://pan.baidu.com/s/1jK3bqImDGSwqRJGVXinS0w 提取码: nab3
- VisDrone MP-Det ResNet50: 链接: https://pan.baidu.com/s/1zOoJVO2fPejnzM9KioZLuQ 提取码: m7rj
Training
This repo is only supposed single GPU.
Prepare
Build by yourself: We provide two data set conversion tools.
# conver VisDrone to COCO
python UFPMP-Det-Tools/build_dataset/VisDrone2COCO.py
# conver UAVDT to COCO
python UFPMP-Det-Tools/build_dataset/UAVDT2COCO.py
# build UFP dataset(VisDrone)
CUDA_VISIBLE_DEVICES=2 python UFPMP-Det-Tools/build_dataset/UFP_VisDrone2COCO.py \
./configs/UFPMP-Det/coarse_det.py \
./work_dirs/coarse_det/epoch_12.pth \
xxxxxx/dataset/COCO/images/UAVtrain \
xxxxxx/dataset/COCO/annotations/instances_UAVtrain_v1.json \
xxxxxx/dataset/COCO/images/instance_UFP_UAVtrain/ \
xxxxxx/dataset/COCO/annotations/instance_UFP_UAVtrain.json \
--txt_path path_to_VisDrone_annotation_dir
Download:
In Quick Start
Train Coarse Detector
CUDA_VISIBLE_DEVICES=0 python tools/train.py ./configs/UFPMP-Det/coarse_det.py
Train MP-Det
CUDA_VISIBLE_DEVICES=0 python tools/train.py ./config/UFPMP-Det/mp_det_res50.py
Test
CUDA_VISIBLE_DEVICES=2 python UFPMP-Det-Tools/eval_script/ufpmp_det_eval.py \
./configs/UFPMP-Det/coarse_det.py \
./work_dirs/coarse_det/epoch_12.pth \
./configs/UFPMP-Det/mp_det_res50.py \
./work_dirs/mp_det_res50/epoch_12.pth \
XXXXX/dataset/COCO/annotations/instances_UAVval_v1.json \
XXXXX/dataset/COCO/images/UAVval
Citation
If you find our paper or this project helps your research, please kindly consider citing our paper in your publication.
@inproceedings{ufpmpdet,
title={UFPMP-Det: Toward Accurate and Efficient Object Detection on Drone Imagery},
author={Huang, Yecheng and Chen, Jiaxin and Huang, Di},
booktitle={AAAI Conference on Artificial Intelligence},
year={2022}
}