Awesome
OpenCL-Wrapper
OpenCL is the most powerful programming language ever created. Yet the OpenCL C++ bindings are cumbersome and the code overhead prevents many people from getting started. I created this lightweight OpenCL-Wrapper to greatly simplify OpenCL software development with C++ while keeping functionality and performance.
Works in Windows, Linux and Android with C++17.
Use-case example: FluidX3D builds entirely on top of this OpenCL-Wrapper.
Getting started:
<details><summary>Install GPU Drivers and OpenCL Runtime (click to expand section)</summary>-
Windows
<details><summary>GPUs</summary> </details> <details><summary>CPUs</summary>- Download and install the Intel CPU Runtime for OpenCL (works for both AMD/Intel CPUs).
- Reboot.
-
Linux
<details><summary>AMD GPUs</summary>- Download and install AMD GPU Drivers, which contain the OpenCL Runtime, with:
sudo apt update && sudo apt upgrade -y sudo apt install -y g++ git make ocl-icd-libopencl1 ocl-icd-opencl-dev mkdir -p ~/amdgpu wget -P ~/amdgpu https://repo.radeon.com/amdgpu-install/6.2.3/ubuntu/noble/amdgpu-install_6.2.60203-1_all.deb sudo apt install -y ~/amdgpu/amdgpu-install*.deb sudo amdgpu-install -y --usecase=graphics,rocm,opencl --opencl=rocr sudo usermod -a -G render,video $(whoami) rm -r ~/amdgpu sudo shutdown -r now
- Intel GPU Drivers come already installed since Linux Kernel 6.2, but they don't contain the OpenCL Runtime.
- The the OpenCL Runtime has to be installed separately with:
sudo apt update && sudo apt upgrade -y sudo apt install -y g++ git make ocl-icd-libopencl1 ocl-icd-opencl-dev intel-opencl-icd sudo usermod -a -G render $(whoami) sudo shutdown -r now
- Download and install Nvidia GPU Drivers, which contain the OpenCL Runtime, with:
sudo apt update && sudo apt upgrade -y sudo apt install -y g++ git make ocl-icd-libopencl1 ocl-icd-opencl-dev nvidia-driver-550 sudo shutdown -r now
- Option 1: Download and install the oneAPI DPC++ Compiler and oneTBB with:
export OCLV="2024.18.10.0.08_rel" export TBBV="2022.0.0" sudo apt update && sudo apt upgrade -y sudo apt install -y g++ git make ocl-icd-libopencl1 ocl-icd-opencl-dev sudo mkdir -p ~/cpurt /opt/intel/oclcpuexp_${OCLV} /etc/OpenCL/vendors /etc/ld.so.conf.d sudo wget -P ~/cpurt https://github.com/intel/llvm/releases/download/2024-WW43/oclcpuexp-${OCLV}.tar.gz sudo wget -P ~/cpurt https://github.com/oneapi-src/oneTBB/releases/download/v${TBBV}/oneapi-tbb-${TBBV}-lin.tgz sudo tar -zxvf ~/cpurt/oclcpuexp-${OCLV}.tar.gz -C /opt/intel/oclcpuexp_${OCLV} sudo tar -zxvf ~/cpurt/oneapi-tbb-${TBBV}-lin.tgz -C /opt/intel echo /opt/intel/oclcpuexp_${OCLV}/x64/libintelocl.so | sudo tee /etc/OpenCL/vendors/intel_expcpu.icd echo /opt/intel/oclcpuexp_${OCLV}/x64 | sudo tee /etc/ld.so.conf.d/libintelopenclexp.conf sudo ln -sf /opt/intel/oneapi-tbb-${TBBV}/lib/intel64/gcc4.8/libtbb.so /opt/intel/oclcpuexp_${OCLV}/x64 sudo ln -sf /opt/intel/oneapi-tbb-${TBBV}/lib/intel64/gcc4.8/libtbbmalloc.so /opt/intel/oclcpuexp_${OCLV}/x64 sudo ln -sf /opt/intel/oneapi-tbb-${TBBV}/lib/intel64/gcc4.8/libtbb.so.12 /opt/intel/oclcpuexp_${OCLV}/x64 sudo ln -sf /opt/intel/oneapi-tbb-${TBBV}/lib/intel64/gcc4.8/libtbbmalloc.so.2 /opt/intel/oclcpuexp_${OCLV}/x64 sudo ldconfig -f /etc/ld.so.conf.d/libintelopenclexp.conf sudo rm -r ~/cpurt
- Option 2: Download and install PoCL with:
sudo apt update && sudo apt upgrade -y sudo apt install -y g++ git make ocl-icd-libopencl1 ocl-icd-opencl-dev pocl-opencl-icd
- Download and install AMD GPU Drivers, which contain the OpenCL Runtime, with:
-
Android
<details><summary>ARM GPUs</summary>- Download the Termux
.apk
and install it. - In the Termux app, run:
apt update && apt upgrade -y apt install -y clang git make
- Download the Termux
▸Download+unzip the source code or git clone https://github.com/ProjectPhysX/OpenCL-Wrapper.git
- Download and install Visual Studio Community. In Visual Studio Installer, add:
- Desktop development with C++
- MSVC v142
- Windows 10 SDK
- Open
OpenCL-Wrapper.sln
in Visual Studio Community. - Compile and run by clicking the <kbd>► Local Windows Debugger</kbd> button.
- Compile and run with:
chmod +x make.sh ./make.sh
- Compiling requires
g++
withC++17
, which is supported since version8
(check withg++ --version
). - Operating system (Linux/macOS/Android) is detected automatically.
Key simplifications:
- select a
Device
with 1 line- automatically select fastest device / device with most memory / device with specified ID from a list of all devices
- easily get device information (performance in TFLOPs/s, amount of memory and cache, FP64/FP16 capabilities, etc.)
- automatic OpenCL C code compilation when creating the Device object
- automatically enable FP64/FP16 capabilities in OpenCL C code
- automatically print log to console if there are compile errors
- easy option to generate PTX assembly for Nvidia GPUs and save that in a
.ptx
file
- contains all device-specific workarounds/patches to make OpenCL fully cross-compatible
- enable basic FP16 support on Nvidia Pascal and newer GPUs with driver 520 or newer
- enable >4GB single buffer VRAM allocations on Intel Arc GPUs
- fix for wrong VRAM capacity reporting on Intel Arc GPUs
- fix for maximum buffer allocation size limit for AMD GPUs
- fix for maximum buffer allocation size limit in Intel CPU Runtime for OpenCL
- fix for terrible
fma
performance on ARM GPUs
- create a
Memory
object with 1 line- one object for both host and device memory
- easy host <-> device memory transfer (also for 1D/2D/3D grid domains)
- easy handling of multi-dimensional vectors
- can also be used to only allocate memory on host or only allocate memory on device
- automatically tracks total global memory usage of device when allocating/deleting memory
- automatically uses zero-copy buffers on CPUs/iGPUs
- create a
Kernel
with 1 line- Memory objects and constants are linked to OpenCL C kernel parameters during Kernel creation
- a list of Memory objects and constants can be added to Kernel parameters in one line (
add_parameters(...)
) - Kernel parameters can be edited (
set_parameters(...)
) - easy Kernel execution:
kernel.run();
- Kernel function calls can be daisy chained, for example:
kernel.set_parameters(3u, time).run();
- failsafe: you'll get an error message if kernel parameters mismatch between C++ and OpenCL code
- OpenCL C code is embedded into C++
- syntax highlighting in the code editor is retained
- notes / peculiarities of this workaround:
- the
#define R(...) string(" "#__VA_ARGS__" ")
stringification macro converts its arguments to string literals;'\n'
is converted to' '
in the process - these string literals cannot be arbitrarily long, so interrupt them periodically with
)+R(
- to use unbalanced round brackets
'('
/')'
, exit theR(...)
macro and insert a string literal manually:)+"void function("+R(
and)+") {"+R(
- to use preprocessor switch macros, exit the
R(...)
macro and insert a string literal manually:)+"#define TEST"+R(
and)+"#endif"+R( // TEST
- preprocessor replacement macros (for example
#define VARIABLE 42
) don't work; hand these to theDevice
constructor directly instead
- the
No need to:
- have code overhead for selecting a platform/device, passing the OpenCL C code, etc.
- keep track of length and data type for buffers
- have duplicate code for host and device buffers
- keep track of total global memory usage
- keep track of global/local range for kernels
- bother with Queue, Context, Source, Program
- load a
.cl
file at runtime - bother with device-specific workarounds/patches
Example (OpenCL vector addition)
main.cpp
#include "opencl.hpp"
int main() {
Device device(select_device_with_most_flops()); // compile OpenCL C code for the fastest available device
const uint N = 1024u; // size of vectors
Memory<float> A(device, N); // allocate memory on both host and device
Memory<float> B(device, N);
Memory<float> C(device, N);
Kernel add_kernel(device, N, "add_kernel", A, B, C); // kernel that runs on the device
for(uint n=0u; n<N; n++) {
A[n] = 3.0f; // initialize memory
B[n] = 2.0f;
C[n] = 1.0f;
}
print_info("Value before kernel execution: C[0] = "+to_string(C[0]));
A.write_to_device(); // copy data from host memory to device memory
B.write_to_device();
add_kernel.run(); // run add_kernel on the device
C.read_from_device(); // copy data from device memory to host memory
print_info("Value after kernel execution: C[0] = "+to_string(C[0]));
wait();
return 0;
}
kernel.cpp
#include "kernel.hpp" // note: unbalanced round brackets () are not allowed and string literals can't be arbitrarily long, so periodically interrupt with )+R(
string opencl_c_container() { return R( // ########################## begin of OpenCL C code ####################################################################
kernel void add_kernel(global float* A, global float* B, global float* C) { // equivalent to "for(uint n=0u; n<N; n++) {", but executed in parallel
const uint n = get_global_id(0);
C[n] = A[n]+B[n];
}
);} // ############################################################### end of OpenCL C code #####################################################################
For comparison, the very same OpenCL vector addition example looks like this when directly using the OpenCL C++ bindings:
#include <CL/cl.hpp>
#include "utilities.hpp"
#define WORKGROUP_SIZE 64
int main() {
// 1. select device
vector<cl::Device> cl_devices; // get all devices of all platforms
{
vector<cl::Platform> cl_platforms; // get all platforms (drivers)
cl::Platform::get(&cl_platforms);
for(uint i=0u; i<(uint)cl_platforms.size(); i++) {
vector<cl::Device> cl_devices_available;
cl_platforms[i].getDevices(CL_DEVICE_TYPE_ALL, &cl_devices_available);
for(uint j=0u; j<(uint)cl_devices_available.size(); j++) {
cl_devices.push_back(cl_devices_available[j]);
}
}
}
cl::Device cl_device; // select fastest available device
{
float best_value = 0.0f;
uint best_i = 0u; // index of fastest device
for(uint i=0u; i<(uint)cl_devices.size(); i++) { // find device with highest (estimated) floating point performance
const string name = trim(cl_devices[i].getInfo<CL_DEVICE_NAME>()); // device name
const string vendor = trim(cl_devices[i].getInfo<CL_DEVICE_VENDOR>()); // device vendor
const uint compute_units = (uint)cl_devices[i].getInfo<CL_DEVICE_MAX_COMPUTE_UNITS>(); // compute units (CUs) can contain multiple cores depending on the microarchitecture
const uint clock_frequency = (uint)cl_devices[i].getInfo<CL_DEVICE_MAX_CLOCK_FREQUENCY>(); // in MHz
const bool is_gpu = cl_devices[i].getInfo<CL_DEVICE_TYPE>()==CL_DEVICE_TYPE_GPU;
const uint ipc = is_gpu?2u:32u; // IPC (instructions per cycle) is 2 for GPUs and 32 for most modern CPUs
const bool nvidia_192_cores_per_cu = contains_any(to_lower(name), {"gt 6", "gt 7", "gtx 6", "gtx 7", "quadro k", "tesla k"}) || (clock_frequency<1000u&&contains(to_lower(name), "titan")); // identify Kepler GPUs
const bool nvidia_64_cores_per_cu = contains_any(to_lower(name), {"p100", "v100", "a100", "a30", " 16", " 20", "titan v", "titan rtx", "quadro t", "tesla t", "quadro rtx"}) && !contains(to_lower(name), "rtx a"); // identify P100, Volta, Turing, A100, A30
const bool amd_128_cores_per_dualcu = contains(to_lower(name), "gfx10"); // identify RDNA/RDNA2 GPUs where dual CUs are reported
const bool amd_256_cores_per_dualcu = contains(to_lower(name), "gfx11"); // identify RDNA3 GPUs where dual CUs are reported
const bool intel_16_cores_per_cu = contains(to_lower(name), "gpu max"); // identify PVC GPUs
const float nvidia = (float)(contains(to_lower(vendor), "nvidia"))*(nvidia_64_cores_per_cu?64.0f:nvidia_192_cores_per_cu?192.0f:128.0f); // Nvidia GPUs have 192 cores/CU (Kepler), 128 cores/CU (Maxwell, Pascal, Ampere, Hopper, Ada) or 64 cores/CU (P100, Volta, Turing, A100, A30)
const float amd = (float)(contains_any(to_lower(vendor), {"amd", "advanced"}))*(is_gpu?(amd_256_cores_per_dualcu?256.0f:amd_128_cores_per_dualcu?128.0f:64.0f):0.5f); // AMD GPUs have 64 cores/CU (GCN, CDNA), 128 cores/dualCU (RDNA, RDNA2) or 256 cores/dualCU (RDNA3), AMD CPUs (with SMT) have 1/2 core/CU
const float intel = (float)(contains(to_lower(vendor), "intel"))*(is_gpu?(intel_16_cores_per_cu?16.0f:8.0f):0.5f); // Intel GPUs have 16 cores/CU (PVC) or 8 cores/CU (integrated/Arc), Intel CPUs (with HT) have 1/2 core/CU
const float apple = (float)(contains(to_lower(vendor), "apple"))*(128.0f); // Apple ARM GPUs usually have 128 cores/CU
const float arm = (float)(contains(to_lower(vendor), "arm"))*(is_gpu?8.0f:1.0f); // ARM GPUs usually have 8 cores/CU, ARM CPUs have 1 core/CU
cores = to_uint((float)compute_units*(nvidia+amd+intel+apple+arm)); // for CPUs, compute_units is the number of threads (twice the number of cores with hyperthreading)
tflops = 1E-6f*(float)cores*(float)ipc*(float)clock_frequency; // estimated device floating point performance in TeraFLOPs/s
if(tflops>best_value) {
best_value = tflops;
best_i = i;
}
}
const string name = trim(cl_devices[best_i].getInfo<CL_DEVICE_NAME>()); // device name
cl_device = cl_devices[best_i];
print_info(name); // print device name
}
// 2. embed OpenCL C code (raw string literal breaks syntax highlighting)
string opencl_c_code = R"(
kernel void add_kernel(global float* A, global float* B, global float* C) { // equivalent to "for(uint n=0u; n<N; n++) {", but executed in parallel
const uint n = get_global_id(0);
C[n] = A[n]+B[n];
}
)";
// 3. compile OpenCL C code
cl::Context cl_context;
cl::Program cl_program;
cl::CommandQueue cl_queue;
{
cl_context = cl::Context(cl_device);
cl_queue = cl::CommandQueue(cl_context, cl_device);
cl::CommandQueue cl_queue(cl_context, cl_device); // queue to push commands for the device
cl::Program::Sources cl_source;
cl_source.push_back({ opencl_c_code.c_str(), opencl_c_code.length() });
cl_program = cl::Program(cl_context, cl_source);
int error = cl_program.build("-cl-fast-relaxed-math -w"); // compile OpenCL C code, disable warnings
if(error) print_warning(cl_program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(cl_device)); // print build log
if(error) print_error("OpenCL C code compilation failed.");
else print_info("OpenCL C code successfully compiled.");
}
// 4. allocate memory on host and device
const uint N = 1024u;
float* host_A;
float* host_B;
float* host_C;
cl::Buffer device_A;
cl::Buffer device_B;
cl::Buffer device_C;
{
host_A = new float[N];
host_B = new float[N];
host_C = new float[N];
for(uint i=0u; i<N; i++) {
host_A[i] = 0.0f; // zero all buffers
host_B[i] = 0.0f;
host_C[i] = 0.0f;
}
int error = 0;
device_A = cl::Buffer(cl_context, CL_MEM_READ_WRITE, N*sizeof(float), nullptr, &error);
if(error) print_error("OpenCL Buffer allocation failed with error code "+to_string(error)+".");
device_B = cl::Buffer(cl_context, CL_MEM_READ_WRITE, N*sizeof(float), nullptr, &error);
if(error) print_error("OpenCL Buffer allocation failed with error code "+to_string(error)+".");
device_C = cl::Buffer(cl_context, CL_MEM_READ_WRITE, N*sizeof(float), nullptr, &error);
if(error) print_error("OpenCL Buffer allocation failed with error code "+to_string(error)+".");
cl_queue.enqueueWriteBuffer(device_A, true, 0u, N*sizeof(float), (void*)host_A); // have to keep track of buffer range and buffer data type
cl_queue.enqueueWriteBuffer(device_B, true, 0u, N*sizeof(float), (void*)host_B);
cl_queue.enqueueWriteBuffer(device_C, true, 0u, N*sizeof(float), (void*)host_C);
}
// 5. create Kernel object and link input parameters
cl::NDRange cl_range_global, cl_range_local;
cl::Kernel cl_kernel;
{
cl_kernel = cl::Kernel(cl_program, "add_kernel");
cl_kernel.setArg(0, device_A);
cl_kernel.setArg(1, device_B);
cl_kernel.setArg(2, device_C);
cl_range_local = cl::NDRange(WORKGROUP_SIZE);
cl_range_global = cl::NDRange(((N+WORKGROUP_SIZE-1)/WORKGROUP_SIZE)*WORKGROUP_SIZE); // make global range a multiple of local range
}
// 6. finally run the actual program
{
for(uint i=0u; i<N; i++) {
host_A[i] = 3.0f; // initialize buffers on host
host_B[i] = 2.0f;
host_C[i] = 1.0f;
}
print_info("Value before kernel execution: C[0] = "+to_string(host_C[0]));
cl_queue.enqueueWriteBuffer(device_A, true, 0u, N*sizeof(float), (void*)host_A); // copy A and B to device
cl_queue.enqueueWriteBuffer(device_B, true, 0u, N*sizeof(float), (void*)host_B); // have to keep track of buffer range and buffer data type
cl_queue.enqueueNDRangeKernel(cl_kernel, cl::NullRange, cl_range_global, cl_range_local); // have to keep track of kernel ranges
cl_queue.finish(); // don't forget to finish the queue
cl_queue.enqueueReadBuffer(device_C, true, 0u, N*sizeof(float), (void*)host_C);
print_info("Value after kernel execution: C[0] = "+to_string(host_C[0]));
}
wait();
return 0;
}