Home

Awesome

<p align="center"> <img src="https://z1.ax1x.com/2023/11/07/pil4sqH.png" width="150" style="margin-bottom: 0.2;"/> <p> <h2 align="center"> <a href="https://arxiv.org/abs/2311.10122">Video-LLaVA: Learning United Visual Representation by Alignment Before Projection</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for latest update. </h2> <h5 align="center">

hf_space Open in OpenXLab Studios Replicate demo and cloud API arXiv <br> License Hits GitHub issues GitHub closed issues <br> zhihu zhihu zhihu zhihu zhihu zhihu zhihu

<!--[![zhihu](https://img.shields.io/badge/-Bilibili-000000?logo=bilibili&logoColor=00A1D6)](https://zhuanlan.zhihu.com/p/668166885)--> </h5>

PWC <br> PWC <br> PWC <br>

<details open><summary>💡 I also have other video-language projects that may interest you ✨. </summary><p> <!-- may -->

Open-Sora Plan: Open-Source Large Video Generation Model <br> Bin Lin and Yunyang Ge and Xinhua Cheng and Zongjian Li and Bin Zhu and Shaodong Wang and Xianyi He and Yang Ye and Shenghai Yuan and Liuhan Chen and Tanghui Jia and Junwu Zhang and Zhenyu Tang and Yatian Pang and Bin She and Cen Yan and Zhiheng Hu and Xiaoyi Dong and Lin Chen and Zhang Pan and Xing Zhou and Shaoling Dong and Yonghong Tian and Li Yuan <br> github github arXiv <br>

MoE-LLaVA: Mixture of Experts for Large Vision-Language Models <br> Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Junwu Zhang, Munan Ning, Li Yuan <br> github github arXiv <br>

LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment <br> Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, HongFa Wang, Yatian Pang, Wenhao Jiang, Junwu Zhang, Zongwei Li, Wancai Zhang, Zhifeng Li, Wei Liu, Li Yuan <br> github github arXiv <br>

<!-- > [**Video-Bench: A Comprehensive Benchmark and Toolkit for Evaluating Video-based Large Language Models**](https://arxiv.org/abs/2311.08046) <br> > Munan Ning, Bin Zhu, Yujia Xie, Bin Lin, Jiaxi Cui, Lu Yuan, Dongdong Chen, Li Yuan <br> [![github](https://img.shields.io/badge/-Github-black?logo=github)](https://github.com/PKU-YuanGroup/Video-Bench) [![github](https://img.shields.io/github/stars/PKU-YuanGroup/Video-Bench.svg?style=social)](https://github.com/PKU-YuanGroup/Video-Bench) [![arXiv](https://img.shields.io/badge/Arxiv-2311.16103-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2311.16103) <br> --> </p></details>

📰 News

😮 Highlights

Video-LLaVA exhibits remarkable interactive capabilities between images and videos, despite the absence of image-video pairs in the dataset.

💡 Simple baseline, learning united visual representation by alignment before projection

🔥 High performance, complementary learning with video and image

<img src="assets/main.jpg"/>

🤗 Demo

Gradio Web UI

Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by Video-LLaVA. We also provide online demo in Huggingface Spaces.

python -m  videollava.serve.gradio_web_server

https://github.com/PKU-YuanGroup/Video-LLaVA/assets/62638829/71ab15ac-105e-4b18-b0b5-e1b35d70607b

CLI Inference

CUDA_VISIBLE_DEVICES=0 python -m videollava.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/video.mp4" --load-4bit
<img src="assets/videocli.gif" width="500" />
CUDA_VISIBLE_DEVICES=0 python -m videollava.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/image.jpg" --load-4bit
<img src="assets/imagecli.gif" width="500" />

🚀 Main Results

Image understanding

<p align="left"> <img src="assets/res_img.jpg" width=80%> </p>

Video understanding

<p align="left"> <img src="assets/res_vi.jpg" width=80%> </p>

🛠️ Requirements and Installation

git clone https://github.com/PKU-YuanGroup/Video-LLaVA
cd Video-LLaVA
conda create -n videollava python=3.10 -y
conda activate videollava
pip install --upgrade pip  # enable PEP 660 support
pip install -e .
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
pip install decord opencv-python git+https://github.com/facebookresearch/pytorchvideo.git@28fe037d212663c6a24f373b94cc5d478c8c1a1d

🤖 API

[!Warning]

<div align="left"> <b> 🚨 Upgrade transformers for quick access. </b> </div>
pip install -U transformers

If you need to install av then do

python -m pip install av

import av
import numpy as np
from transformers import VideoLlavaProcessor, VideoLlavaForConditionalGeneration

def read_video_pyav(container, indices):
    frames = []
    container.seek(0)
    start_index = indices[0]
    end_index = indices[-1]
    for i, frame in enumerate(container.decode(video=0)):
        if i > end_index:
            break
        if i >= start_index and i in indices:
            frames.append(frame)
    return np.stack([x.to_ndarray(format="rgb24") for x in frames])


model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf")
processor = VideoLlavaProcessor.from_pretrained("LanguageBind/Video-LLaVA-7B-hf")

prompt = "USER: <video>Why is this video funny? ASSISTANT:"
video_path = "YOUR-LOCAL-VIDEO-PATH"
container = av.open(video_path)

# sample uniformly 8 frames from the video
total_frames = container.streams.video[0].frames
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
clip = read_video_pyav(container, indices)

inputs = processor(text=prompt, videos=clip, return_tensors="pt")

# Generate
generate_ids = model.generate(**inputs, max_length=80)
print(processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0])
>>> 'USER:  Why is this video funny? ASSISTANT: The video is funny because the baby is sitting on the bed and reading a book, which is an unusual and amusing sight.'
<details> <summary>outdated</summary>

We open source all codes. If you want to load the model (e.g. LanguageBind/Video-LLaVA-7B) on local, you can use the following code snippets.

Inference for image

import torch
from videollava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from videollava.conversation import conv_templates, SeparatorStyle
from videollava.model.builder import load_pretrained_model
from videollava.utils import disable_torch_init
from videollava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria

def main():
    disable_torch_init()
    image = 'videollava/serve/examples/extreme_ironing.jpg'
    inp = 'What is unusual about this image?'
    model_path = 'LanguageBind/Video-LLaVA-7B'
    cache_dir = 'cache_dir'
    device = 'cuda'
    load_4bit, load_8bit = True, False
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir)
    image_processor = processor['image']
    conv_mode = "llava_v1"
    conv = conv_templates[conv_mode].copy()
    roles = conv.roles

    image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values']
    if type(image_tensor) is list:
        tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
    else:
        tensor = image_tensor.to(model.device, dtype=torch.float16)

    print(f"{roles[1]}: {inp}")
    inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
    conv.append_message(conv.roles[0], inp)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()
    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=tensor,
            do_sample=True,
            temperature=0.2,
            max_new_tokens=1024,
            use_cache=True,
            stopping_criteria=[stopping_criteria])

    outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
    print(outputs)

if __name__ == '__main__':
    main()

Inference for video

import torch
from videollava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from videollava.conversation import conv_templates, SeparatorStyle
from videollava.model.builder import load_pretrained_model
from videollava.utils import disable_torch_init
from videollava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria

def main():
    disable_torch_init()
    video = 'videollava/serve/examples/sample_demo_1.mp4'
    inp = 'Why is this video funny?'
    model_path = 'LanguageBind/Video-LLaVA-7B'
    cache_dir = 'cache_dir'
    device = 'cuda'
    load_4bit, load_8bit = True, False
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir)
    video_processor = processor['video']
    conv_mode = "llava_v1"
    conv = conv_templates[conv_mode].copy()
    roles = conv.roles

    video_tensor = video_processor(video, return_tensors='pt')['pixel_values']
    if type(video_tensor) is list:
        tensor = [video.to(model.device, dtype=torch.float16) for video in video_tensor]
    else:
        tensor = video_tensor.to(model.device, dtype=torch.float16)

    print(f"{roles[1]}: {inp}")
    inp = ' '.join([DEFAULT_IMAGE_TOKEN] * model.get_video_tower().config.num_frames) + '\n' + inp
    conv.append_message(conv.roles[0], inp)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()
    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

    with torch.inference_mode():
        output_ids = model.generate(
            input_ids,
            images=tensor,
            do_sample=True,
            temperature=0.1,
            max_new_tokens=1024,
            use_cache=True,
            stopping_criteria=[stopping_criteria])

    outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
    print(outputs)

if __name__ == '__main__':
    main()
</details>

🗝️ Training & Validating

The training & validating instruction is in TRAIN_AND_VALIDATE.md.

👍 Acknowledgement

🙌 Related Projects

🔒 License

✏️ Citation

If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.

@article{lin2023video,
  title={Video-LLaVA: Learning United Visual Representation by Alignment Before Projection},
  author={Lin, Bin and Zhu, Bin and Ye, Yang and Ning, Munan and Jin, Peng and Yuan, Li},
  journal={arXiv preprint arXiv:2311.10122},
  year={2023}
}
@article{zhu2023languagebind,
  title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment},
  author={Zhu, Bin and Lin, Bin and Ning, Munan and Yan, Yang and Cui, Jiaxi and Wang, HongFa and Pang, Yatian and Jiang, Wenhao and Zhang, Junwu and Li, Zongwei and others},
  journal={arXiv preprint arXiv:2310.01852},
  year={2023}
}
<!---->

✨ Star History

Star History

🤝 Contributors

<a href="https://github.com/PKU-YuanGroup/Video-LLaVA/graphs/contributors"> <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/Video-LLaVA" /> </a>