Home

Awesome

Libra R-CNN

We provide config files to reproduce the results in the CVPR 2019 paper Libra R-CNN.

@inproceedings{pang2019libra,
  title={Libra R-CNN: Towards Balanced Learning for Object Detection},
  author={Pang, Jiangmiao and Chen, Kai and Shi, Jianping and Feng, Huajun and Ouyang, Wanli and Dahua Lin},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

@article{pang2021towards,
  title={Towards Balanced Learning for Instance Recognition},
  author={Pang, Jiangmiao and Chen, Kai and Li, Qi and Xu, Zhihai and Feng, Huajun and Shi, Jianping and Ouyang, Wanli and Lin, Dahua},
  journal={International Journal of Computer Vision},
  volume={129},
  number={5},
  pages={1376--1393},
  year={2021},
  publisher={Springer}
}

The code of Libra R-CNN has been merged into mmdetection.

This repo will not be updated. Please turn to mmdetection for latest version.

MMDetection

News: We released the technical report on ArXiv.

Introduction

The master branch works with PyTorch 1.1 or higher.

mmdetection is an open source object detection toolbox based on PyTorch. It is a part of the open-mmlab project developed by Multimedia Laboratory, CUHK.

demo image

Major features

Apart from MMDetection, we also released a library mmcv for computer vision research, which is heavily depended on by this toolbox.

License

This project is released under the Apache 2.0 license.

Updates

v0.6.0 (14/04/2019)

v0.6rc0(06/02/2019)

v0.5.7 (06/02/2019)

v0.5.6 (17/01/2019)

v0.5.5 (22/12/2018)

v0.5.4 (27/11/2018)

v0.5.3 (26/11/2018)

v0.5.2 (21/10/2018)

v0.5.1 (20/10/2018)

Benchmark and model zoo

Supported methods and backbones are shown in the below table. Results and models are available in the Model zoo.

ResNetResNeXtSENetVGGHRNet
RPN
Fast R-CNN
Faster R-CNN
Mask R-CNN
Cascade R-CNN
Cascade Mask R-CNN
SSD
RetinaNet
GHM
Mask Scoring R-CNN
FCOS
Grid R-CNN
Hybrid Task Cascade
Libra R-CNN
Guided Anchoring

Other features

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Get Started

Please see GETTING_STARTED.md for the basic usage of MMDetection.

Contributing

We appreciate all contributions to improve MMDetection. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMDetection is an open source project that is contributed by researchers and engineers from various colledges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@article{mmdetection,
  title   = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark},
  author  = {Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li,
             Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng,
             Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
             Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, Dahua Lin},
  journal = {arXiv preprint arXiv:1906.07155},
  year    = {2019}
}

Contact

This repo is currently maintained by Kai Chen (@hellock), Jiangmiao Pang (@OceanPang), Jiaqi Wang (@myownskyW7) and Yuhang Cao (@yhcao6).