Home

Awesome

Non-Salient Region Object Mining for Weakly Supervised Semantic Segmentation

Introduction

This is the source code for our paper Non-Salient Region Object Mining for Weakly Supervised Semantic Segmentation.

Network Architecture

The architecture of our proposed approach is as follows network

Installation

git clone https://github.com/NUST-Machine-Intelligence-Laboratory/nsrom.git

Download PASCAL VOC 2012

Testing

cd segmentation

python main.py test --config-path configs/voc12.yaml --model-path data/models/checkpoint_70.4.pth

python main.py crf --config-path configs/voc12.yaml

Training

cd classification
./train.sh 
./test.sh 
./train_iam.sh
./test_iam.sh
python gen_label.py
cd segmentation
python main.py train --config-path configs/voc12.yaml
python trainaug_pred.py test --config-path configs/voc12.yaml \
    --model-path data/models/voc12/deeplabv2_resnet101_msc/train_aug/checkpoint_final.pth

python trainaug_pred.py crf --config-path configs/voc12.yaml -j 10
cd classification
python gen_masked_label.py
cd segmentation
python main.py train --config-path configs/voc12.yaml

Acknowledgements

This codebase is heavily borrowed from OAA-PyTorch and deeplab-pytorch.