Home

Awesome

DeepLab with PyTorch

This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone.

Performance

COCO-Stuff

<table> <tr> <th>Train set</th> <th>Eval set</th> <th>Code</th> <th>Weight</th> <th>CRF?</th> <th>Pixel<br>Accuracy</th> <th>Mean<br>Accuracy</th> <th>Mean IoU</th> <th>FreqW IoU</th> </tr> <tr> <td rowspan="3"> 10k <i>train</i> &dagger; </td> <td rowspan="3">10k <i>val</i> &dagger;</td> <td>Official [<a href="#references">2</a>]</td> <td></td> <td></td> <td><strong>65.1</strong></td> <td><strong>45.5</strong></td> <td><strong>34.4</strong></td> <td><strong>50.4</strong></td> </tr> <tr> <td rowspan="2"><strong>This repo</strong></td> <td rowspan="2"><a href="https://github.com/kazuto1011/deeplab-pytorch/releases/download/v1.0/deeplabv2_resnet101_msc-cocostuff10k-20000.pth">Download</a></td> <td></td> <td><strong>65.8</td> <td><strong>45.7</strong></td> <td><strong>34.8</strong></td> <td><strong>51.2</strong></td> </tr> <tr> <td>&#10003;</td> <td>67.1</td> <td>46.4</td> <td>35.6</td> <td>52.5</td> </tr> <tr> <td rowspan="2"> 164k <i>train</i> </td> <td rowspan="2">164k <i>val</i></td> <td rowspan="2"><strong>This repo</strong></td> <td rowspan="2"><a href="https://github.com/kazuto1011/deeplab-pytorch/releases/download/v1.0/deeplabv2_resnet101_msc-cocostuff164k-100000.pth">Download</a> &Dagger;</td> <td></td> <td>66.8</td> <td>51.2</td> <td>39.1</td> <td>51.5</td> </tr> <tr> <td>&#10003;</td> <td>67.6</td> <td>51.5</td> <td>39.7</td> <td>52.3</td> </tr> </table>

† Images and labels are pre-warped to square-shape 513x513<br> ‡ Note for SPADE followers: The provided COCO-Stuff 164k weight has been kept intact since 2019/02/23.

PASCAL VOC 2012

<table> <tr> <th>Train set</th> <th>Eval set</th> <th>Code</th> <th>Weight</th> <th>CRF?</th> <th>Pixel<br>Accuracy</th> <th>Mean<br>Accuracy</th> <th>Mean IoU</th> <th>FreqW IoU</th> </tr> <tr> <td rowspan="4"> <i>trainaug</i> </td> <td rowspan="4"><i>val</i></td> <td rowspan="2">Official [<a href="#references">3</a>]</td> <td rowspan="2"></td> <td></td> <td>-</td> <td>-</td> <td><strong>76.35</strong></td> <td>-</td> </tr> <tr> <td>&#10003;</td> <td>-</td> <td>-</td> <td><strong>77.69</strong></td> <td>-</td> </tr> <tr> <td rowspan="2"><strong>This repo</strong></td> <td rowspan="2"><a href="https://github.com/kazuto1011/deeplab-pytorch/releases/download/v1.0/deeplabv2_resnet101_msc-vocaug-20000.pth">Download</a></td> <td></td> <td>94.64</td> <td>86.50</td> <td><strong>76.65</td> <td>90.41</td> </tr> <tr> <td>&#10003;</td> <td>95.04</td> <td>86.64</td> <td><strong>77.93</strong></td> <td>91.06</td> </tr> </table>

Setup

Requirements

Required Python packages are listed in the Anaconda configuration file configs/conda_env.yaml. Please modify the listed cudatoolkit=10.2 and python=3.6 as needed and run the following commands.

# Set up with Anaconda
conda env create -f configs/conda_env.yaml
conda activate deeplab-pytorch

Download datasets

Download pre-trained caffemodels

Caffemodels pre-trained on COCO and PASCAL VOC datasets are released by the DeepLab authors. In accordance with the papers [1,2], this repository uses the COCO-trained parameters as initial weights.

  1. Run the follwing script to download the pre-trained caffemodels (1GB+).
$ bash scripts/setup_caffemodels.sh
  1. Convert the caffemodels to pytorch compatibles. No need to build the Caffe API!
# Generate "deeplabv1_resnet101-coco.pth" from "init.caffemodel"
$ python convert.py --dataset coco
# Generate "deeplabv2_resnet101_msc-vocaug.pth" from "train2_iter_20000.caffemodel"
$ python convert.py --dataset voc12

Training & Evaluation

To train DeepLab v2 on PASCAL VOC 2012:

python main.py train \
    --config-path configs/voc12.yaml

To evaluate the performance on a validation set:

python main.py test \
    --config-path configs/voc12.yaml \
    --model-path data/models/voc12/deeplabv2_resnet101_msc/train_aug/checkpoint_final.pth

Note: This command saves the predicted logit maps (.npy) and the scores (.json).

To re-evaluate with a CRF post-processing:<br>

python main.py crf \
    --config-path configs/voc12.yaml

Execution of a series of the above scripts is equivalent to bash scripts/train_eval.sh.

To monitor a loss, run the following command in a separate terminal.

tensorboard --logdir data/logs

Please specify the appropriate configuration files for the other datasets.

DatasetConfig file#IterationsClasses
PASCAL VOC 2012configs/voc12.yaml20,00020 foreground + 1 background
COCO-Stuff 10kconfigs/cocostuff10k.yaml20,000182 thing/stuff
COCO-Stuff 164kconfigs/cocostuff164k.yaml100,000182 thing/stuff

Note: Although the label indices range from 0 to 181 in COCO-Stuff 10k/164k, only 171 classes are supervised.

Common settings:

Processed images and labels in COCO-Stuff 164k:

Data

Inference Demo

You can use the pre-trained models, the converted models, or your models.

To process a single image:

python demo.py single \
    --config-path configs/voc12.yaml \
    --model-path deeplabv2_resnet101_msc-vocaug-20000.pth \
    --image-path image.jpg

To run on a webcam:

python demo.py live \
    --config-path configs/voc12.yaml \
    --model-path deeplabv2_resnet101_msc-vocaug-20000.pth

To run a CRF post-processing, add --crf. To run on a CPU, add --cpu.

Misc

torch.hub

Model setup with two lines

import torch.hub
model = torch.hub.load("kazuto1011/deeplab-pytorch", "deeplabv2_resnet101", pretrained='cocostuff164k', n_classes=182)

Difference with Caffe version

Training batch normalization

This codebase only supports DeepLab v2 training which freezes batch normalization layers, although v3/v3+ protocols require training them. If training their parameters on multiple GPUs as well in your projects, please install the extra library below.

pip install torch-encoding

Batch normalization layers in a model are automatically switched in libs/models/resnet.py.

try:
    from encoding.nn import SyncBatchNorm
    _BATCH_NORM = SyncBatchNorm
except:
    _BATCH_NORM = nn.BatchNorm2d

References

  1. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE TPAMI, 2018.<br> Project / Code / arXiv paper

  2. H. Caesar, J. Uijlings, V. Ferrari. COCO-Stuff: Thing and Stuff Classes in Context. In CVPR, 2018.<br> Project / arXiv paper

  3. M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV, 2010.<br> Project / Paper