Awesome
Target Adaptive Context Aggregation for Video Scene Graph Generation
This is a PyTorch implementation for Target Adaptive Context Aggregation for Video Scene Graph Generation.
Requirements
- PyTorch >= 1.2 (Mine 1.7.1 (CUDA 10.1))
- torchvision >= 0.4 (Mine 0.8.2 (CUDA 10.1))
- cython
- matplotlib
- numpy
- scipy
- opencv
- pyyaml
- packaging
- pycocotools
- tensorboardX
- tqdm
- pillow
- scikit-image
- h5py
- yacs
- ninja
- overrides
- mmcv
Compilation
Compile the CUDA code in the Detectron submodule and in the repo:
# ROOT=path/to/cloned/repository
cd $ROOT/Detectron_pytorch/lib
sh make.sh
cd $ROOT/lib
sh make.sh
Data Preparation
Download Datasets
Download links: VidVRD and AG.
Create directories for datasets. The directories for ./data/
should look like:
|-- data
| |-- ag
| |-- vidvrd
| |-- obj_embed
where ag
and vidvrd
are for AG and VidVRD datasets, and obj_embed
is for GloVe, the weights of pre-trained word vectors. The final directories for GloVe should look like:
|-- obj_embed
| |-- glove.6B.200d.pt
| |-- glove.6B.300d.pt
| |-- glove.6B.300d.txt
| |-- glove.6B.200d.txt
| |-- glove.6B.100d.txt
| |-- glove.6B.50d.txt
| |-- glove.6B.300d
AG
Put the .mp4 files into ./data/ag/videos/
. Put the annotations into ./data/ag/annotations/
.
The final directories for VidVRD dataset should look like:
|-- ag
| |-- annotations
| | |-- object_classes.txt
| | |-- ...
| |-- videos
| | |-- ....mp4
| |-- Charades_annotations
VidVRD
Put the .mp4 files into ./data/vidvrd/videos/
. Put the three documents test
, train
and videos
from the vidvrd-annoataions into ./data/vidvrd/annotations/
. (If the links are invalid, you can refer to their offical website: ImageNet-VidVRD dataset)
Download precomputed precomputed features, model and detected relations from here (or here). Extract features
and models
into ./data/vidvrd/
.
The final directories for VidVRD dataset should look like:
|-- vidvrd
| |-- annotations
| | |-- test
| | |-- train
| | |-- videos
| | |-- predicate.txt
| | |-- object.txt
| | |-- ...
| |-- features
| | |-- relation
| | |-- traj_cls
| | |-- traj_cls_gt
| |-- models
| | |-- baseline_setting.json
| | |-- ...
| |-- videos
| | |-- ILSVRC2015_train_00005003.mp4
| | |-- ...
Change the format of annotations for AG and VidVRD
# ROOT=path/to/cloned/repository
cd $ROOT
python tools/rename_ag.py
python tools/rename_vidvrd_anno.py
python tools/get_vidvrd_pretrained_rois.py --out_rpath pre_processed_boxes_gt_dense_more --rpath traj_cls_gt
python tools/get_vidvrd_pretrained_rois.py --out_rpath pre_processed_boxes_dense_more
Dump frames
Our ffmpeg version is 4.2.2-0york0~16.04 so using --ignore_editlist
to avoid some frames being ignored. The jpg format saves the drive space.
Dump the annotated frames for AG and VidVRD.
python tools/dump_frames.py --ignore_editlist
python tools/dump_frames.py --ignore_editlist --video_dir data/vidvrd/videos --frame_dir data/vidvrd/frames --frame_list_file val_fname_list.json,train_fname_list.json --annotation_dir data/vidvrd/annotations --st_id 0
Dump the sampled high quality frames for AG and VidVRD.
python tools/dump_frames.py --frame_dir data/ag/sampled_frames --ignore_editlist --frames_store_type jpg --high_quality --sampled_frames
python tools/dump_frames.py --ignore_editlist --video_dir data/vidvrd/videos --frame_dir data/vidvrd/sampled_frames --frame_list_file val_fname_list.json,train_fname_list.json --annotation_dir data/vidvrd/annotations --frames_store_type jpg --high_quality --sampled_frames --st_id 0
If you want to dump all frames with jpg format.
python tools/dump_frames.py --all_frames --frame_dir data/ag/all_frames --ignore_editlist --frames_store_type jpg
Get classes in json format for AG
# ROOT=path/to/cloned/repository
cd $ROOT
python txt2json.py
Get Charades train/test split for AG
Download Charades annotations and extract the annotations into ./data/ag/Charades_annotations/
. Then run,
# ROOT=path/to/cloned/repository
cd $ROOT
python tools/dataset_split.py
Pretrained Models
Download model weights from here.
- pretrained object detection
- TRACE trained on VidVRD in
detection_models/vidvrd/trained_rel
- TRACE trained on AG in
detection_models/ag/trained_rel
Performance
VidVrd, gt box
Method | mAP | Recall@50 | Recall@100 |
---|---|---|---|
TRACE | 30.6 | 19.3 | 24.6 |
VidVrd, detected box
Method | mAP | Recall@50 | Recall@100 |
---|---|---|---|
TRACE | 16.3 | 9.2 | 11.2 |
AG, detected box
Training Relationship Detection Models
VidVRD
# ROOT=path/to/cloned/repository
cd $ROOT
CUDA_VISIBLE_DEVICES=0 python tools/train_net_step_rel.py --dataset vidvrd --cfg configs/vidvrd/vidvrd_res101xi3d50_all_boxes_sample_train_flip_dc5_2d_new.yaml --nw 8 --use_tfboard --disp_interval 20 --o SGD --lr 0.025
AG
# ROOT=path/to/cloned/repository
cd $ROOT
CUDA_VISIBLE_DEVICES=0 python tools/train_net_step_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --nw 8 --use_tfboard --disp_interval 20 --o SGD --lr 0.01
Evaluating Relationship Detection Models
VidVRD
evaluation for gt boxes
CUDA_VISIBLE_DEVICES=1,2,3,4,5,6,7 python tools/test_net_rel.py --dataset vidvrd --cfg configs/vidvrd/vidvrd_res101xi3d50_gt_boxes_dc5_2d_new.yaml --load_ckpt Outputs/vidvrd_res101xi3d50_all_boxes_sample_train_flip_dc5_2d_new/Aug01-16-20-06_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step12999.pth --output_dir Outputs/vidvrd_new101 --do_val --multi-gpu-testing
python tools/transform_vidvrd_results.py --input_dir Outputs/vidvrd_new101 --output_dir Outputs/vidvrd_new101 --is_gt_traj
python tools/test_vidvrd.py --prediction Outputs/vidvrd_new101/baseline_relation_prediction.json --groundtruth data/vidvrd/annotations/test_gt.json
evaluation for detected boxes
CUDA_VISIBLE_DEVICES=1 python tools/test_net_rel.py --dataset vidvrd --cfg configs/vidvrd/vidvrd_res101xi3d50_pred_boxes_flip_dc5_2d_new.yaml --load_ckpt Outputs/vidvrd_res101xi3d50_all_boxes_sample_train_flip_dc5_2d_new/Aug01-16-20-06_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step12999.pth --output_dir Outputs/vidvrd_new101_det2 --do_val
python tools/transform_vidvrd_results.py --input_dir Outputs/vidvrd_new101_det2 --output_dir Outputs/vidvrd_new101_det2
python tools/test_vidvrd.py --prediction Outputs/vidvrd_new101_det2/baseline_relation_prediction.json --groundtruth data/vidvrd/annotations/test_gt.json
AG
evaluation for detected boxes, Recalls (SGDet)
CUDA_VISIBLE_DEVICES=4 python tools/test_net_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --load_ckpt Outputs/res101xi3d50_dc5_2d/Nov01-21-50-49_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step177329.pth --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --do_val
#evaluation for detected boxes, mRecalls
python tools/visualize.py --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --num 60000 --no_do_vis --rel_class_recall
evaluation for detected boxes, mAP_{rel}
CUDA_VISIBLE_DEVICES=4 python tools/test_net_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --load_ckpt Outputs/res101xi3d50_dc5_2d/Nov01-21-50-49_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step177329.pth --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --do_val --eva_map --topk 50
evaluation for gt boxes, Recalls (SGCls)
CUDA_VISIBLE_DEVICES=4 python tools/test_net_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --load_ckpt Outputs/res101xi3d50_dc5_2d/Nov01-21-50-49_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step177329.pth --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --do_val --use_gt_boxes
#evaluation for detected boxes, mRecalls
python tools/visualize.py --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --num 60000 --no_do_vis --rel_class_recall
evaluation for gt boxes, gt object labels, Recalls (PredCls)
CUDA_VISIBLE_DEVICES=4 python tools/test_net_rel.py --dataset ag --cfg configs/ag/res101xi3d50_dc5_2d.yaml --load_ckpt Outputs/res101xi3d50_dc5_2d/Nov01-21-50-49_gpuserver-11_step_with_prd_cls_v3/ckpt/model_step177329.pth --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --do_val --use_gt_boxes --use_gt_labels
#evaluation for detected boxes, mRecalls
python tools/visualize.py --output_dir Outputs/ag_val_101_ag_dc5_jin_map_new_infer_multiatten --num 60000 --no_do_vis --rel_class_recall
Hint
- We apply the dilation convolution in I3D now, but observe a gridding effect in temporal feature maps.
Acknowledgements
This project is built on top of ContrastiveLosses4VRD, ActionGenome and VidVRD-helper. The corresponding papers are Graphical Contrastive Losses for Scene Graph Parsing, Action Genome: Actions as Compositions of Spatio-temporal Scene Graphs and Video Visual Relation Detection.
Citing
If you use this code in your research, please use the following BibTeX entry.
@inproceedings{Target_Adaptive_Context_Aggregation_for_Video_Scene_Graph_Generation,
author = {Yao Teng and
Limin Wang and
Zhifeng Li and
Gangshan Wu},
title = {Target Adaptive Context Aggregation for Video Scene Graph Generation},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages = {13688--13697},
year = {2021}
}