Awesome
Pose-Assisted Multi-Camera Collaboration for Active Object Tracking
This repository is the python implementation of Pose-Assisted Multi-Camera Collaboration for Active Object Tracking (AAAI 2020).
It contains the code for training/testing(Pytorch). The 3D environments are hosted in gym-unrealcv.
Dependencies
The repository requires:
- Linux (Ubuntu 16)
- Python >= 3.6
- Pytorch >= 1.0
- gym-unrealcv >= 1.0
- OpenCV >= 3.4
- Numpy == 1.14.0
- setproctitle, scikit-image, imageio, TensorboardX, Matplotlib
Prepare 3D Environments
Install gym-unrealcv:
git clone https://github.com/zfw1226/gym_unrealcv
cd gym_unrealcv
pip install -e .
Load environment binaries:
python load_env.py -e Textures
python load_env.py -e MCRoom
python load_env.py -e UrbanTree
python load_env.py -e Garden
Installation
To download the repository and install the requirements, you can run as:
git clone https://github.com/LilJing/pose-assisted-collaboration.git
cd pose-assisted-collaboration
pip install -r requirements.txt
Note that you need install OpenCV
, Pytorch
, and the 3D environments
additionally.
Training
Train the vision-based controller
Use the following command:
python main.py --rescale --shared-optimizer --env UnrealMCRoom-DiscreteColorGoal-v5 --workers 6
Train the pose-based controller
cd ./pose
python main.py --env PoseEnv-v0 --shared-optimizer --workers 12
The best parameters of the network will be saved in corresponding logs
dir.
Evaluation
There are two environments for evaluation, Garden and Urban City.
We provide the pre-trained model in .models/
.
The trained vision-based controller model is Vision-model-best.dat
and the pose-based controller model is Pose-model-best.dat
.
Run our model on Garden:
python evaluate.py --rescale --load-vision-model ./models/Vision-model-best.dat --load-pose-model ./models/Pose-model-best.dat --env UnrealGarden-DiscreteColorGoal-v1 --num-episodes 100 --test-type modelgate --render
Run our model on Urban City:
python evaluate.py --rescale --load-vision-model ./models/Vision-model-best.dat --load-pose-model ./models/Pose-model-best.dat --env UnrealUrbanTree-DiscreteColorGoal-v1 --num-episodes 100 --test-type modelgate --render
Demo Videos
To see demo videos, please refer to YouTube.
Citation
If you found this work useful, please consider citing:
@inproceedings{li2020pose,
title={Pose-Assisted Multi-Camera Collaboration for Active Object Tracking},
author={Jing Li*, Jing Xu*, Fangwei Zhong*, Xiangyu Kong, Yu Qiao, Yizhou Wang},
booktitle={The Thirty-Fourth AAAI Conference on Artificial Intelligence},
year={2020}
}