Awesome
<h1 align="center">Amber: the first model of LLM360</h1> <div align="center"> <img src="figs/amber_logo.png" alt="amber logo" width="300"><br><br> </div><p align="center"> <a href="https://github.com/LLM360/Analysis360/blob/dev/LICENSE"><img src="https://img.shields.io/badge/License-Apache_2.0-blue.svg" alt="license"></a> </p> <p align="center"> š¤ <a href="https://huggingface.co/LLM360/Amber">[Amber Download]</a> ā¢ š¤ <a href="https://huggingface.co/LLM360/AmberChat">[AmberChat Download]</a> ā¢ š <a href="https://github.com/LLM360/Analysis360/blob/main/README.md#list-of-analysis-and-metrics ">[Analysis and Results]</a> ā¢ š <a href="https://huggingface.co/datasets/LLM360/AmberDatasets">Pretraining Dataset</a> </p>
About LLM360
LLM360 is an initiative for comprehensive and fully open-sourced LLMs, where all training details, model checkpoints, intermediate results, and additional analyses are made available to the community. Our goal is to advance the field by inviting the community to deepen the understanding of LLMs together. As the first step of the project LLM360, we release all intermediate model checkpoints, our fully-prepared pre-training dataset, all source code and configurations, and training details. We are committed to continually pushing the boundaries of LLMs through this open-source effort.
Get access now at LLM360 site
Model Description
Amber is the first model in the LLM360 family. Amber is an 7B English language model with the LLaMA architecture.
- Model type: Language model with the same architecture as LLaMA-7B
- Language(s) (NLP): English
- License: Apache 2.0
- Resources for more information:
Loading Amber
from transformers import LlamaTokenizer, LlamaForCausalLM
tokenizer = LlamaTokenizer.from_pretrained("LLM360/Amber", revision="ckpt_356")
model = LlamaForCausalLM.from_pretrained("LLM360/Amber", revision="ckpt_356")
input_text = "translate English to German: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
Amber Training Details
DataMix
Subset | Tokens (Billion) |
---|---|
Arxiv | 30.00 |
Book | 28.86 |
C4 | 197.67 |
Refined-Web | 665.01 |
StarCoder | 291.92 |
StackExchange | 21.75 |
Wikipedia | 23.90 |
Total | 1259.13 |
Hyperparameters
Hyperparameter | Value |
---|---|
Total Parameters | 6.7B |
Hidden Size | 4096 |
Intermediate Size (MLPs) | 11008 |
Number of Attention Heads | 32 |
Number of Hidden Layers | 32 |
RMSNorm É | 1e^-6 |
Max Seq Length | 2048 |
Vocab Size | 32000 |
Training Loss |
---|
<img src="figs/amber-training-loss.png" alt="loss curve" width="400"/> |
Evaluation
ARC | HellaSwag |
---|---|
<img src="figs/amber-arc-curve.png" alt="arc" width="400"/> | <img src="figs/amber-hellaswag-curve.png" alt="hellaswag" width="400"/> |
MMLU | TruthfulQA |
---|---|
<img src="figs/amber-mmlu-curve.png" alt="mmlu" width="400"/> | <img src="figs/amber-truthfulqa-curve.png" alt="truthfulqa" width="400"/> |
Citation
BibTeX:
@misc{liu2023llm360,
title={LLM360: Towards Fully Transparent Open-Source LLMs},
author={Zhengzhong Liu and Aurick Qiao and Willie Neiswanger and Hongyi Wang and Bowen Tan and Tianhua Tao and Junbo Li and Yuqi Wang and Suqi Sun and Omkar Pangarkar and Richard Fan and Yi Gu and Victor Miller and Yonghao Zhuang and Guowei He and Haonan Li and Fajri Koto and Liping Tang and Nikhil Ranjan and Zhiqiang Shen and Xuguang Ren and Roberto Iriondo and Cun Mu and Zhiting Hu and Mark Schulze and Preslav Nakov and Tim Baldwin and Eric P. Xing},
year={2023},
eprint={2312.06550},
archivePrefix={arXiv},
primaryClass={cs.CL}
}