Home

Awesome

JDet

Introduction

JDet is an object detection benchmark based on Jittor, and mainly focus on aerial image object detection (oriented object detection).

<!-- **Features** - Automatic compilation. Our framwork is based on Jittor, which means we don't need to Manual compilation for these code with CUDA and C++. - --> <!-- Framework details are avaliable in the [framework.md](docs/framework.md) -->

Install

JDet environment requirements:

Step 1: Install the requirements

git clone https://github.com/Jittor/JDet
cd JDet
python -m pip install -r requirements.txt

If you have any installation problems for Jittor, please refer to Jittor

Step 2: Install JDet

cd JDet
# suggest this 
python setup.py develop
# or
python setup.py install

If you don't have permission for install,please add --user.

Or use PYTHONPATH: You can add export PYTHONPATH=$PYTHONPATH:{you_own_path}/JDet/python into .bashrc, and run

source .bashrc

Getting Started

Datasets

The following datasets are supported in JDet, please check the corresponding document before use.

DOTA1.0/DOTA1.5/DOTA2.0 Dataset: dota.md.

FAIR Dataset: fair.md

SSDD/SSDD+: ssdd.md

You can also build your own dataset by convert your datas to DOTA format.

Config

JDet defines the used model, dataset and training/testing method by config-file, please check the config.md to learn how it works.

Train

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=train

Test

If you want to test the downloaded trained models, please set resume_path={you_checkpointspath} in the last line of the config file.

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=test

Test on images / Visualization

You can test and visualize results on your own image sets by:

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=vis_test

You can choose the visualization style you prefer, for more details about visualization, please refer to visualization.md. <img src="https://github.com/Jittor/JDet/blob/visualization/docs/images/vis2.jpg?raw=true" alt="Visualization" width="800"/>

Build a New Project

In this section, we will introduce how to build a new project(model) with JDet. We need to install JDet first, and build a new project by:

mkdir $PROJECT_PATH$
cd $PROJECT_PATH$
cp $JDet_PATH$/tools/run_net.py ./
mkdir configs

Then we can build and edit configs/base.py like $JDet_PATH$/configs/retinanet.py. If we need to use a new layer, we can define this layer at $PROJECT_PATH$/layers.py and import layers.py in $PROJECT_PATH$/run_net.py, then we can use this layer in config files. Then we can train/test this model by:

python run_net.py --config-file=configs/base.py --task=train
python run_net.py --config-file=configs/base.py --task=test

Models

ModelsDatasetSub_Image_Size/OverlapTrain AugTest AugOptimLr schdmAPPaperConfigDownload
S2ANet-R50-FPNDOTA1.01024/200flip-SGD1x74.11arxivconfigmodel
S2ANet-R50-FPNDOTA1.01024/200flip+ra90+bc-SGD1x76.40arxivconfigmodel
S2ANet-R50-FPNDOTA1.01024/200flip+ra90+bc+msmsSGD1x79.72arxivconfigmodel
S2ANet-R101-FPNDOTA1.01024/200Flip-SGD1x74.28arxivconfigmodel
Gliding-R50-FPNDOTA1.01024/200Flip-SGD1x72.93arxivconfigmodel
Gliding-R50-FPNDOTA1.01024/200Flip+ra90+bc-SGD1x74.93arxivconfigmodel
H2RBox-R50-FPNDOTA1.01024/200flip-AdamW1x67.62arxivconfigmodel
RetinaNet-hbb-R50-FPNDOTA1.01024/200flip-SGD1x68.02arxivconfigmodel
RetinaNet-obb-R50-FPNDOTA1.01024/200flip-SGD1x68.07arxivconfigmodel
GWD-R50-FPNDOTA1.01024/200flip-SGD1x68.88arxivconfigmodel
KLD-R50-FPNDOTA1.01024/200flip-SGD1x69.10arxivconfigmodel
KFIoU-R50-FPNDOTA1.01024/200flip-SGD1x69.36arxivconfigmodel
FasterRCNN-R50-FPNDOTA1.01024/200Flip-SGD1x69.631arxivconfigmodel
RoITransformer-R50-FPNDOTA1.01024/200Flip-SGD1x73.842arxivconfigmodel
FCOS-R50-FPNDOTA1.01024/200flip-SGD1x70.40ICCV19configmodel
OrientedRCNN-R50-FPNDOTA1.01024/200Flip-SGD1x75.62ICCV21configmodel
ReDet-R50-FPNDOTA1.01024/200Flip-SGD1x76.23arxivconfigmodel pretrained
CSL-R50-FPNDOTA1.01024/200flip-SGD1x67.99arxivconfigmodel
RSDet-R50-FPNDOTA1.01024/200Flip-SGD1x68.41arxivconfigmodel
ATSS-R50-FPNDOTA1.01024/200flip-SGD1x72.44arxivconfigmodel
Reppoints-R50-FPNDOTA1.01024/200flip-SGD1x56.34arxivconfigmodel

Notice:

  1. ms: multiscale
  2. flip: random flip
  3. ra: rotate aug
  4. ra90: rotate aug with angle 90,180,270
  5. 1x : 12 epochs
  6. bc: balance category
  7. mAP: mean Average Precision on DOTA1.0 test set

Plan of Models

<b>:heavy_check_mark:Supported :clock3:Doing :heavy_plus_sign:TODO</b>

Plan of Datasets

<b>:heavy_check_mark:Supported :clock3:Doing :heavy_plus_sign:TODO</b>

Contact Us

Website: http://cg.cs.tsinghua.edu.cn/jittor/

Email: jittor@qq.com

File an issue: https://github.com/Jittor/jittor/issues

QQ Group: 761222083

<img src="https://cg.cs.tsinghua.edu.cn/jittor/images/news/2020-12-8-21-19-1_2_2/fig4.png" width="200"/>

The Team

JDet is currently maintained by the Tsinghua CSCG Group. If you are also interested in JDet and want to improve it, Please join us!

Citation

@article{hu2020jittor,
  title={Jittor: a novel deep learning framework with meta-operators and unified graph execution},
  author={Hu, Shi-Min and Liang, Dun and Yang, Guo-Ye and Yang, Guo-Wei and Zhou, Wen-Yang},
  journal={Science China Information Sciences},
  volume={63},
  number={222103},
  pages={1--21},
  year={2020}
}

Reference

  1. Jittor
  2. mmrotate
  3. Detectron2
  4. mmdetection
  5. maskrcnn_benchmark
  6. RotationDetection
  7. s2anet
  8. gliding_vertex
  9. oriented_rcnn
  10. r3det
  11. AerialDetection
  12. DOTA_devkit
  13. OBBDetection