Awesome
SwiftCoreMLTools
A Swift Library for creating CoreML models in Swift.
Work in progress
This library expose a (function builder based) DSL as well as a programmatic API (see examples below).
The library also implement Codable protocol allowing to print and edit CoreML model in JSON format.
The library is not "official" - it is not part of Apple CoreML and it is not maintained.
This library use the Apple Swift Protocol Buffer package and compile and import to Swift the CoreML ProtoBuf datastructures defined from the GitHub Apple CoreMLTools repo - https://github.com/apple/coremltools/tree/master/mlmodel/format
This package could be used to export Swift For TensorFlow models or to generate new CoreML models from scratch providing a much swifty interface compared to directly using the Swift compiled CoreML protobuf data structures.
CoreML models generated with this library could be potentially personalized (trained) partially or entirely using the CoreML runtime.
CoreML support much more then Neural Network models but this experimental library is only focused, at the moment, on Neural Network support.
End to end test case exporting a real S4TF model at: https://github.com/JacopoMangiavacchi/TestSwiftCoreMLTools
Sample projects using this library to create and train Core ML models on device
LeNet Convolutional Neural Network for MNIST dataset
- GitHub project: https://github.com/JacopoMangiavacchi/MNIST-CoreML-Training
- Documentation: https://medium.com/@JMangia/mnist-cnn-core-ml-training-c0f081014fa6
Transfer Learning with Categorical Embedding
- GitHub project: https://github.com/JacopoMangiavacchi/CoreML-TransferLearning-Demo
- Documentation: https://heartbeat.fritz.ai/core-ml-on-device-training-with-transfer-learning-from-swift-for-tensorflow-models-1264b444e18d
Documentation
Neural Network Support (work in progress)
Layers
- InnerProduct
- Convolution
- Embedding
- Flatten
- Pooling
- Permute
- Concat
Activation Functions
- Linear
- ReLu
- LeakyReLu
- ThresholdedReLu
- PReLu
- Tanh
- ScaledTanh
- Sigmoid
- SigmoidHard
- Elu
- Softsign
- Softplus
- ParametricSoftplus
- Softmax
Loss Functions
- MSE
- CategoricalCrossEntropy
Optimizers
- SGD
- Adam
Export Swift for TensorFlow sample scenario
Trivial Swift for TensorFlow model
struct LinearRegression: Layer {
var layer1 = Dense<Float>(inputSize: 1, outputSize: 1, activation: identity)
@differentiable
func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
return layer1(input)
}
}
var s4tfModel = LinearRegression()
// Training Loop ...
Export to CoreML using DSL approach
let coremlModel = Model(version: 4,
shortDescription: "Trivial linear classifier",
author: "Jacopo Mangiavacchi",
license: "MIT",
userDefined: ["SwiftCoremltoolsVersion" : "0.1"]) {
Input(name: "dense_input", shape: [1])
Output(name: "output", shape: [1])
NeuralNetwork {
InnerProduct(name: "dense_1",
input: ["dense_input"],
output: ["output"],
weight: s4tfModel.layer1.weight.transposed().flattened().scalars,
bias: s4tfModel.layer1.bias.flattened().scalars,
inputChannels: 1,
outputChannels: 1)
}
}
Export a CoreML personalizable (re-trainable) model using DSL approach
let coremlModel = Model(version: 4,
shortDescription: "Trivial linear classifier",
author: "Jacopo Mangiavacchi",
license: "MIT",
userDefined: ["SwiftCoremltoolsVersion" : "0.1"]) {
Input(name: "dense_input", shape: [1])
Output(name: "output", shape: [1])
TrainingInput(name: "dense_input", shape: [1])
TrainingInput(name: "output_true", shape: [1])
NeuralNetwork(losses: [MSE(name: "lossLayer",
input: "output",
target: "output_true")],
optimizer: SGD(learningRateDefault: 0.01,
learningRateMax: 0.3,
miniBatchSizeDefault: 5,
miniBatchSizeRange: [5],
momentumDefault: 0,
momentumMax: 1.0),
epochDefault: 2,
epochSet: [2],
shuffle: true) {
InnerProduct(name: "dense_1",
input: ["dense_input"],
output: ["output"],
weight: s4tfModel.layer1.weight.transposed().flattened().scalars,
bias: s4tfModel.layer1.bias.flattened().scalars,
inputChannels: 1,
outputChannels: 1,
updatable: true)
}
}
Example code to export and save to a CoreML model data file
let model = Model(...){ ... }
let coreMLData = model.coreMLData
try! coreMLData.write(to: URL(fileURLWithPath: "model.mlmodel"))
CoreML model creation with programmatic API
var model = Model(version: 4,
shortDescription: "Trivial linear classifier",
author: "Jacopo Mangiavacchi",
license: "MIT",
userDefined: ["SwiftCoremltoolsVersion" : "0.1"])
model.addInput(Input(name: "dense_input", shape: [1]))
model.addOutput(Output(name: "output", shape: [1]))
model.addTrainingInput(TrainingInput(name: "dense_input", shape: [1]))
model.addTrainingInput(TrainingInput(name: "output_true", shape: [1]))
model.neuralNetwork = NeuralNetwork(losses: [MSE(name: "lossLayer",
input: "output",
target: "output_true")],
optimizer: SGD(learningRateDefault: 0.01,
learningRateMax: 0.3,
miniBatchSizeDefault: 5,
miniBatchSizeRange: [5],
momentumDefault: 0,
momentumMax: 1.0),
epochDefault: 2,
epochSet: [2],
shuffle: true)
model.neuralNetwork.addLayer(InnerProduct(name: "layer1",
input: ["dense_input"],
output: ["output"],
weight: [0.0],
bias: [0.0],
inputChannels: 1,
outputChannels: 1,
updatable: true))
YAML / JSON Format model persistence (Codable)
Example CoreML model in YAML format
version: 4
shortDescription: Trivial linear classifier
author: Jacopo Mangiavacchi
license: MIT
userDefined:
SwiftCoremltoolsVersion: '0.1'
inputs:
dense_input:
name: dense_input
shape:
- 1
featureType: float
outputs:
output:
name: output
shape:
- 1
featureType: float
trainingInputs:
dense_input:
name: dense_input
shape:
- 1
featureType: float
output_true:
name: output_true
shape:
- 1
featureType: float
neuralNetwork:
losses:
- type: mse
base:
name: lossLayer
input: output
target: output_true
optimizer:
type: sgd
base:
learningRateDefault: 1e-2
learningRateMax: 3e-1
miniBatchSizeDefault: 5
miniBatchSizeRange:
- 5
momentumDefault: 0e+0
momentumMax: 1e+0
epochDefault: 2
epochSet:
- 2
shuffle: true
layers:
- type: innerProduct
base:
name: layer1
input:
- dense_input
output:
- output
weight:
- 0e+0
bias:
- 0e+0
inputChannels: 1
outputChannels: 1
updatable: true
Example CoreML model in JSON format
{
"author" : "Jacopo Mangiavacchi",
"shortDescription" : "Trivial linear classifier",
"version" : 4,
"license" : "MIT",
"userDefined" : {
"SwiftCoremltoolsVersion" : "0.1"
},
"inputs" : {
"dense_input" : {
"name" : "dense_input",
"shape" : [1],
"featureType" : "float"
}
},
"outputs" : {
"output" : {
"name" : "output",
"shape" : [1],
"featureType" : "float"
}
},
"trainingInputs" : {
"output_true" : {
"name" : "output_true",
"shape" : [1],
"featureType" : "float"
},
"dense_input" : {
"name" : "dense_input",
"shape" : [1],
"featureType" : "float"
}
},
"neuralNetwork" : {
"layers" : [
{
"type" : "innerProduct",
"base" : {
"output" : [
"output"
],
"outputChannels" : 1,
"weight" : [0],
"input" : [
"dense_input"
],
"bias" : [0],
"inputChannels" : 1,
"updatable" : true,
"name" : "layer1"
}
}
],
"optimizer" : {
"type" : "sgd",
"base" : {
"momentumDefault" : 0,
"momentumMax" : 1,
"learningRateMax" : 0.3,
"miniBatchSizeRange" : [5],
"miniBatchSizeDefault" : 5,
"learningRateDefault" : 0.01
}
},
"losses" : [
{
"type" : "mse",
"base" : {
"name" : "lossLayer",
"input" : "output",
"target" : "output_true"
}
}
],
"shuffle" : true,
"epochDefault" : 2,
"epochSet" : [2]
}
}