Home

Awesome

DOI PyPI version codecov build Deploy Documentation JOSS

naturf

Neighborhood Adaptive Tissues for Urban Resilience Futures (naturf) is an open-source geospatial Python package that calculates and compiles urban building parameters to be input to the Weather Research and Forecasting model (WRF).

Purpose

naturf was created to:

Install

pip install naturf

Check out a quickstart tutorial to run naturf

Run naturf! Check out the naturf ipynb Quickstarter or the naturf Python Quickstarter.

User guide

Our user guide provides in-depth information on the key concepts of naturf with useful background information and explanation.

Contributing

Whether you find a typo in the documentation, find a bug, or want to develop functionality that you think will make naturf more robust, you are welcome to contribute! See our Contribution Guidelines

API reference

The reference guide contains a detailed description of the naturf API. The reference describes how the methods work and which parameters can be used. It assumes that you have an understanding of the key concepts. See API Reference

Developer Setup

To get started on development, install the pre-commit hooks to format code.

First install pre-commit.

Then install the hooks within the repo:

$ cd /PATH/TO/NATURF
$ pre-commit install

Data Products and other citations

Allen-Dumas, Melissa R., Sweet-Breu, Levi, Rexer, Emily, and Vernon, Chris. Neighborhood Adaptive Tissues for Urban Resilience Futures (NATURF) V1.0. Computer Software. https://github.com/IMMM-SFA/naturf. USDOE Office of Science (SC), Biological and Environmental Research (BER). Earth & Environmental Systems Science (EESS). 03 Jun. 2024. Web. doi:10.11578/dc.20240531.1.

Sweet-Breu, L., & Allen-Dumas, M. (2024). Urban Parameters LA County 100m (Version v1) [Data set]. MSD-LIVE Data Repository. https://doi.org/10.57931/2349436

Allen-Dumas M ; Sweet-Breu L (2024): Urban Parameters Maricopa County 100m Grid Spacing. Southwest Urban Corridor Integrated Field Laboratory (SW-IFL), ESS-DIVE repository. Dataset. ess-dive-b6200929fa5b268-20240604T184443135 accessed via https://data.ess-dive.lbl.gov/datasets/ess-dive-b6200929fa5b268-20240604T184443135 on 2024-06-04.

Sample data citation

OpenDataDC (2021) Open Data DC. URL https://opendata.dc.gov/datasets