Home

Awesome

Deep Visual Inertial Odometry

Deep learning based visual-inertial odometry project. <br> pros:

cons:

Please Cite:

Hongyun Lee, James W. Gregory, Matthew McCrink, and Alper Yilmaz. "Deep Learning for Visual-Inertial Odometry: Estimation of Monocular Camera Ego-Motion and its Uncertainty" The Ohio State University, Master Thesis, http://rave.ohiolink.edu/etdc/view?acc_num=osu156331321922759

References(current & future)

Please see paper.

Usage:

  1. git clone -- recursive https://github.com/ElliotHYLee/Deep_Visual_Inertial_Odometry
  2. Put the .m (Matlab) files under KITTI/odom/dataset/. The files are at DataGenerator folder.
  3. run make_trainable_data.m
  4. In src/Parampy, change the path for KITTI.
  5. At Deep_Visual_Inertial_Odometry, "python main.py"

ToDo

Prereq.s

  1. Matlab
  2. Python 3.5
<pre> pip install numpy pip install scipy pip install pandas pip install matplotlib pip install scikit-learn pip install pathlib pip install pypng pip install pillow pip install django pip install image pip install opencv-python opencv-contrib-python </pre>

detail: https://github.com/ElliotHYLee/SystemReady

Tested System

<pre> CPU: i9-7940x RAM: 128G, 3200Hz GPU: two Gefore 1080 ti MB: ROG STRIX x299-E Gaming </pre> <pre> Windows10 Python3 PyTorch: v1 CUDA: v9.0 Cudnn: v7.1 </pre>

Run

python main_cnn.py

Traing Results

description

<ul> <img src="https://github.com/ElliotHYLee/Deep_Visual_Inertial_Odometry/blob/master/Results/Figures/master_kitti_none0_results.png" width="400"> </ul>

Test Results

<ul> <img src="https://github.com/ElliotHYLee/Deep_Visual_Inertial_Odometry/blob/master/Results/Figures/master_kitti_none5_results.png" width="400"> <img src="https://github.com/ElliotHYLee/VisualOdometry3D/blob/master/Results/Figures/master_airsim_mr2_results.png" width="400"> </ul>

Correction Result

<ul> <img src="" width="400"> </ul>