Awesome
YOLOV7-Tiny-OBB:You Only Look Once OBB旋转目标检测模型在pytorch当中的实现
目录
- 仓库更新 Top News
- 相关仓库 Related code
- 性能情况 Performance
- 所需环境 Environment
- 文件下载 Download
- 训练步骤 How2train
- 预测步骤 How2predict
- 评估步骤 How2eval
- 参考资料 Reference
Top News
2023-02
:仓库创建,支持step、cos学习率下降法、支持adam、sgd优化器选择、支持学习率根据batch_size自适应调整、新增图片裁剪、支持多GPU训练、支持各个种类目标数量计算、支持heatmap、支持EMA。
相关仓库
目标检测模型 | 路径 |
---|---|
YoloV7-OBB | https://github.com/Egrt/yolov7-obb |
YoloV7-Tiny-OBB | https://github.com/Egrt/yolov7-tiny-obb |
性能情况
训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mAP 0.5 | fps |
---|---|---|---|---|---|
UAV-ROD | yolov7_tiny_obb_uav | UAV-ROD-Val | 640x640 | 98.00% | 50 |
UAV-ROD | yolov7_tiny_trt | UAV-ROD-Val | 640x640 | 97.75% | 120 |
预测结果展示
所需环境
cuda==11.3
torch==1.10.1
torchvision==0.11.2
为了使用amp混合精度,推荐使用torch1.7.1以上的版本。
文件下载
UAV-ROD数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分:
链接: https://pan.baidu.com/s/1Ae8AGb2L6zCjCwJFzs2WfA
提取码: ybec
训练步骤
a、训练VOC07+12数据集
-
数据集的准备
本文使用VOC格式进行训练,训练前需要下载好VOC07+12的数据集,解压后放在根目录 -
数据集的处理
修改voc_annotation.py里面的annotation_mode=2,运行voc_annotation.py生成根目录下的2007_train.txt和2007_val.txt。
生成的数据集格式为image_path, x1, y1, x2, y2, x3, y3, x4, y4(polygon), class。 -
开始网络训练
train.py的默认参数用于训练VOC数据集,直接运行train.py即可开始训练。 -
训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。我们首先需要去yolo.py里面修改model_path以及classes_path,这两个参数必须要修改。
model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
b、训练自己的数据集
-
数据集的准备
本文使用VOC格式进行训练,训练前需要自己制作好数据集,
训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。 -
数据集的处理
在完成数据集的摆放之后,我们需要利用voc_annotation.py获得训练用的2007_train.txt和2007_val.txt。
修改voc_annotation.py里面的参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。
训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。
model_data/cls_classes.txt文件内容为:
cat
dog
...
修改voc_annotation.py中的classes_path,使其对应cls_classes.txt,并运行voc_annotation.py。
-
开始网络训练
训练的参数较多,均在train.py中,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。
classes_path用于指向检测类别所对应的txt,这个txt和voc_annotation.py里面的txt一样!训练自己的数据集必须要修改!
修改完classes_path后就可以运行train.py开始训练了,在训练多个epoch后,权值会生成在logs文件夹中。 -
训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。在yolo.py里面修改model_path以及classes_path。
model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
预测步骤
a、使用预训练权重
- 下载完库后解压,在百度网盘下载权值,放入model_data,运行predict.py,输入
img/street.jpg
- 在predict.py里面进行设置可以进行fps测试和video视频检测。
b、使用自己训练的权重
- 按照训练步骤训练。
- 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类。
_defaults = {
#--------------------------------------------------------------------------#
# 使用自己训练好的模型进行预测一定要修改model_path和classes_path!
# model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
#
# 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
# 验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。
# 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
#--------------------------------------------------------------------------#
"model_path" : 'model_data/yolov7_weights.pth',
"classes_path" : 'model_data/coco_classes.txt',
#---------------------------------------------------------------------#
# anchors_path代表先验框对应的txt文件,一般不修改。
# anchors_mask用于帮助代码找到对应的先验框,一般不修改。
#---------------------------------------------------------------------#
"anchors_path" : 'model_data/yolo_anchors.txt',
"anchors_mask" : [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
#---------------------------------------------------------------------#
# 输入图片的大小,必须为32的倍数。
#---------------------------------------------------------------------#
"input_shape" : [640, 640],
#---------------------------------------------------------------------#
# 只有得分大于置信度的预测框会被保留下来
#---------------------------------------------------------------------#
"confidence" : 0.5,
#---------------------------------------------------------------------#
# 非极大抑制所用到的nms_iou大小
#---------------------------------------------------------------------#
"nms_iou" : 0.3,
#---------------------------------------------------------------------#
# 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
# 在多次测试后,发现关闭letterbox_image直接resize的效果更好
#---------------------------------------------------------------------#
"letterbox_image" : True,
#-------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#-------------------------------#
"cuda" : True,
}
- 运行predict.py,输入
img/street.jpg
- 在predict.py里面进行设置可以进行fps测试和video视频检测。
评估步骤
a、评估VOC07+12的测试集
- 本文使用VOC格式进行评估。VOC07+12已经划分好了测试集,无需利用voc_annotation.py生成ImageSets文件夹下的txt。
- 在yolo.py里面修改model_path以及classes_path。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。
- 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。
b、评估自己的数据集
- 本文使用VOC格式进行评估。
- 如果在训练前已经运行过voc_annotation.py文件,代码会自动将数据集划分成训练集、验证集和测试集。如果想要修改测试集的比例,可以修改voc_annotation.py文件下的trainval_percent。trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1。train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1。
- 利用voc_annotation.py划分测试集后,前往get_map.py文件修改classes_path,classes_path用于指向检测类别所对应的txt,这个txt和训练时的txt一样。评估自己的数据集必须要修改。
- 在yolo.py里面修改model_path以及classes_path。model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。
- 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。