Home

Awesome

大模型(LLMs)应用开发快速入门指南

GitHub stars GitHub forks GitHub watchers GitHub repo size GitHub language count GitHub top language GitHub last commit

<p align="center"> <br> <a href="README-en.md">English</a> | 中文 </p>

本项目旨在为所有对大型语言模型及其在生成式人工智能(AIGC)场景中应用的人们提供一站式学习资源。通过提供理论基础,开发基础,和实践示例,该项目对这些前沿主题提供了全面的指导。

特性

拉取代码

你可以通过克隆此仓库到你的本地机器来开始:

git clone https://github.com/DjangoPeng/openai-quickstart.git

然后导航至目录,并按照单个模块的指示开始操作。

搭建开发环境

本项目使用 Python v3.10 开发,完整 Python 依赖软件包见requirements.txt

关键依赖的官方文档如下:

以下是详细的安装指导(以 Ubuntu 操作系统为例)

安装 Miniconda

mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh

安装完成后,建议新建一个 Python 虚拟环境,命名为 langchain

conda create -n langchain python=3.10

# 激活环境
conda activate langchain 

之后每次使用需要激活此环境。

安装 Python 依赖软件包

pip install -r requirements.txt

配置 OpenAI API Key

根据你使用的命令行工具,在 ~/.bashrc~/.zshrc 中配置 OPENAI_API_KEY 环境变量:

export OPENAI_API_KEY="xxxx"

安装和配置 Jupyter Lab

上述开发环境安装完成后,使用 Miniconda 安装 Jupyter Lab:

conda install -c conda-forge jupyterlab

使用 Jupyter Lab 开发的最佳实践是后台常驻,下面是相关配置(以 root 用户为例):

# 生成 Jupyter Lab 配置文件,
jupyter lab --generate-config

打开上面执行输出的jupyter_lab_config.py配置文件后,修改以下配置项:

c.ServerApp.allow_root = True # 非 root 用户启动,无需修改
c.ServerApp.ip = '*'

使用 nohup 后台启动 Jupyter Lab

$ nohup jupyter lab --port=8000 --NotebookApp.token='替换为你的密码' --notebook-dir=./ &

Jupyter Lab 输出的日志将会保存在 nohup.out 文件(已在 .gitignore中过滤)。

课程大纲

完整文档请移步:大模型(LLMs)应用开发快速入门指南课程大纲

贡献

贡献是使开源社区成为学习、激励和创造的惊人之处。非常感谢你所做的任何贡献。如果你有任何建议或功能请求,请先开启一个议题讨论你想要改变的内容。

<a href='https://github.com/repo-reviews/repo-reviews.github.io/blob/main/create.md' target="_blank"><img alt='Github' src='https://img.shields.io/badge/review_me-100000?style=flat&logo=Github&logoColor=white&labelColor=888888&color=555555'/></a>

许可证

该项目根据Apache-2.0许可证的条款进行许可。详情请参见LICENSE文件。

联系

Django Peng - pjt73651@email.com

项目链接: https://github.com/DjangoPeng/openai-quickstart

⭐️⭐️

<a href="https://star-history.com/#DjangoPeng/openai-quickstart&Date"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=DjangoPeng/openai-quickstart&type=Date&theme=dark" /> <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=DjangoPeng/openai-quickstart&type=Date" /> <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=DjangoPeng/openai-quickstart&type=Date" /> </picture> </a>