Home

Awesome

InterD

This is the official pytorch implementation of InterD, a debiasing method for recommendation system. InterD is proposed in the paper:

[Interpolative Distillation for Unifying Biased and Debiased Recommendation]

by Sihao Ding, Fuli Feng, Xiangnan He, Jinqiu Jin, Wenjie Wang, Yong Liao and Yongdong Zhang

Published at SIGIR 2022. If you use this code please cite our paper.

@inproceedings{ding2022interpolative,
author = {Ding, Sihao and Feng, Fuli and He, Xiangnan and Jin, Jinqiu and Wang, Wenjie and Liao, Yong and Zhang, Yongdong},
title = {Interpolative Distillation for Unifying Biased and Debiased Recommendation},
year = {2022},
booktitle = {Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {40–49}
}

Introduction

InterD is a method that unifies biased and debiased methods as teachers to ahcieve strong performance on both normal biased test and debiased test with alleviating over-debiased issue and bias amplification issue in recommendation.

Environment Requirement

The code runs well under python 3.8.10. The required packages are as follows:

Datasets

We use public/private datasets.

Run the Code

You can quickly reproduced the results on Yahoo!R3 with the default parameters by the command:

python train_explicit.py --dataset yahooR3

To implement this code with other teacher models or with on other datasets you may need to fine-tune the hypermenters, and you can find out all hypermenters you need in arguments.py.

Acknowledgment

Some parts of this repository are adopted from AutoDebias and Meta-learning, you can find more information in https://github.com/DongHande/AutoDebias and https://github.com/AdrienLE.