Home

Awesome

AutoDebias

This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the paper:

AutoDebias: Learning to Debias for Recommendation

by Jiawei Chen, Hande Dong, Yang Qiu, Xiangnan He, Xin Xin, Liang Chen, Guli Lin and Keping Yang

Published at SIGIR 2021.

Introduction

AutoDebias is an automatic debiasing method for recommendation system based on meta learning, exploiting a small amout of uniform data to learn de-biasing parameters and using these parameters to guide the learning of the recommendation model.

Environment Requirement

The code runs well under python 3.8.5. The required packages are as follows:

Datasets

We use two public datasets (Yahoo!R3 and Coat) and a synthetic dataset (Simulation).

Run the Code

Explicit feedback

python train_explicit.py --dataset yahooR3
python train_explicit.py --dataset coat

Implicit feedback

python train_implicit.py --dataset yahooR3
python train_implicit.py --dataset coat

Feedback on list recommendation

python train_list.py --dataset simulation

Contact

Please contact cjwustc@ustc.edu.cn or donghd@mail.ustc.edu.cn if you have any questions about the code and paper.