Home

Awesome

License: GNU Briefings in Bioinformatics

iPPIGAN

De novo molecular design with deep molecular generative models for PPI inhibitors

Model Architecture of iPPIGAN

Update

Update the API for calculating molecular voxels from htmd to the latest moleculekit.

htmd==1.13.9 --> moleculekit==1.6.9

Acknowledgements

We thank the authors of LigDream: Shape-Based Compound Generation for releasing their code. The code in this repository is based on their source code release (https://github.com/compsciencelab/ligdream). If you find this code useful, please consider citing their work.

Requirements

Python==3.8
pytorch==1.9.0
keras==2.2.2
RDKit==2023.03.1
moleculekit==1.6.9

https://github.com/rdkit/rdkit

https://github.com/Acellera/moleculekit

Training

#conda activate iPPIGAN
#construct a set of training molecules:
python prepare_data.py -i "train_ippi.smi" -o "train_ippi.npy"

#the training model
python train.py -i "train_ippi.npy" -o "./models"

For the generation stage the model files are available. It is possible to use the ones that are generated during the training step or you can download the ones that we have already generated model files from Google Drive. https://drive.google.com/file/d/15_LdkjFHlMbNlvqISeL1epr_anuZy3ao/view?usp=sharing

Generation

novel compound generation please follow notebook:

iPPIGAN_generate.ipynb

Model Metrics

MOSES

Molecular Sets (MOSES), a benchmarking platform to support research on machine learning for drug discovery. MOSES implements several popular molecular generation models and provides a set of metrics to evaluate the quality and diversity of generated molecules. With MOSES, MOSES aim to standardize the research on molecular generation and facilitate the sharing and comparison of new models. https://github.com/molecularsets/moses

QEPPI

quantitative estimate of protein-protein interaction targeting drug-likeness

https://github.com/ohuelab/QEPPI

License

Code is released under GNU AFFERO GENERAL PUBLIC LICENSE.

Cite: