Home

Awesome

<div align="center"> <img src="https://repository-images.githubusercontent.com/268892956/750228ec-f3f2-465d-9c17-420c688ba2bc"> </div> <p align="center"> <!-- Python --> <a href="https://www.python.org" alt="Python"><img src="https://badges.aleen42.com/src/python.svg"></a> <!-- Version --> <a href="https://pypi.org/project/ranx/"><img src="https://img.shields.io/pypi/v/ranx?color=light-green" alt="PyPI version"></a> <!-- Downloads --> <a href="https://pepy.tech/project/ranx"><img src="https://static.pepy.tech/personalized-badge/ranx?period=total&units=international_system&left_color=grey&right_color=blue&left_text=downloads" alt="Download counter"></a> <!-- Docs --> <a href="https://amenra.github.io/ranx"><img src="https://img.shields.io/badge/docs-passing-<COLOR>.svg" alt="Documentation Status"></a> <!-- Black --> <a href="https://github.com/psf/black" alt="Code style: black"><img src="https://img.shields.io/badge/code%20style-black-000000.svg"></a> <!-- License --> <a href="https://lbesson.mit-license.org/"><img src="https://img.shields.io/badge/license-MIT-blue.svg" alt="License: MIT"></a> <!-- Google Colab --> <a href="https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/1_overview.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open in Colab"/></a> </p> <!-- ## πŸ”₯ News - [month day year] -->

⚑️ Introduction

ranx ([raΕ‹ks]) is a library of fast ranking evaluation metrics implemented in Python, leveraging Numba for high-speed vector operations and automatic parallelization. It offers a user-friendly interface to evaluate and compare Information Retrieval and Recommender Systems. ranx allows you to perform statistical tests and export LaTeX tables for your scientific publications. Moreover, ranx provides several fusion algorithms and normalization strategies, and an automatic fusion optimization functionality. ranx also have a companion repository of pre-computed runs to facilitated model comparisons called ranxhub. On ranxhub, you can download and share pre-computed runs for Information Retrieval datasets, such as MSMARCO Passage Ranking. ranx was featured in ECIR 2022, CIKM 2022, and SIGIR 2023.

If you use ranx to evaluate results or conducting experiments involving fusion for your scientific publication, please consider citing it: evaluation bibtex, fusion bibtex, ranxhub bibtex.

NB: ranx is not suited for evaluating classifiers. Please, refer to the FAQ for further details.

For a quick overview, follow the Usage section.

For a in-depth overview, follow the Examples section.

✨ Features

Metrics

The metrics have been tested against TREC Eval for correctness.

Statistical Tests

Please, refer to Smucker et al., Carterette, and Fuhr for additional information on statistical tests for Information Retrieval.

Off-the-shelf Qrels

You can load qrels from ir-datasets as simply as:

qrels = Qrels.from_ir_datasets("msmarco-document/dev")

A full list of the available qrels is provided here.

Off-the-shelf Runs

You can load runs from ranxhub as simply as:

run = Run.from_ranxhub("run-id")

A full list of the available runs is provided here.

Fusion Algorithms

NameNameNameNameName
CombMINCombMNZRRFMAPFuseBordaFuse
CombMEDCombGMNZRBCPosFuseWeighted BordaFuse
CombANZISRWMNZProbFuseCondorcet
CombMAXLog_ISRMixedSegFuseWeighted Condorcet
CombSUMLogN_ISRBayesFuseSlideFuseWeighted Sum

Please, refer to the documentation for further details.

Normalization Strategies

Please, refer to the documentation for further details.

πŸ”Œ Requirements

python>=3.8

As of v.0.3.5, ranx requires python>=3.8.

πŸ’Ύ Installation

pip install ranx

πŸ’‘ Usage

Create Qrels and Run

from ranx import Qrels, Run

qrels_dict = { "q_1": { "d_12": 5, "d_25": 3 },
               "q_2": { "d_11": 6, "d_22": 1 } }

run_dict = { "q_1": { "d_12": 0.9, "d_23": 0.8, "d_25": 0.7,
                      "d_36": 0.6, "d_32": 0.5, "d_35": 0.4  },
             "q_2": { "d_12": 0.9, "d_11": 0.8, "d_25": 0.7,
                      "d_36": 0.6, "d_22": 0.5, "d_35": 0.4  } }

qrels = Qrels(qrels_dict)
run = Run(run_dict)

Evaluate

from ranx import evaluate

# Compute score for a single metric
evaluate(qrels, run, "ndcg@5")
>>> 0.7861

# Compute scores for multiple metrics at once
evaluate(qrels, run, ["map@5", "mrr"])
>>> {"map@5": 0.6416, "mrr": 0.75}

Compare

from ranx import compare

# Compare different runs and perform Two-sided Paired Student's t-Test
report = compare(
    qrels=qrels,
    runs=[run_1, run_2, run_3, run_4, run_5],
    metrics=["map@100", "mrr@100", "ndcg@10"],
    max_p=0.01  # P-value threshold
)

Output:

print(report)
#    Model    MAP@100    MRR@100    NDCG@10
---  -------  --------   --------   ---------
a    model_1  0.320ᡇ     0.320ᡇ     0.368α΅‡αΆœ
b    model_2  0.233      0.234      0.239
c    model_3  0.308ᡇ     0.309ᡇ     0.330ᡇ
d    model_4  0.366α΅ƒα΅‡αΆœ   0.367α΅ƒα΅‡αΆœ   0.408α΅ƒα΅‡αΆœ
e    model_5  0.405α΅ƒα΅‡αΆœα΅ˆ  0.406α΅ƒα΅‡αΆœα΅ˆ  0.451α΅ƒα΅‡αΆœα΅ˆ

Fusion

from ranx import fuse, optimize_fusion

best_params = optimize_fusion(
    qrels=train_qrels,
    runs=[train_run_1, train_run_2, train_run_3],
    norm="min-max",     # The norm. to apply before fusion
    method="wsum",      # The fusion algorithm to use (Weighted Sum)
    metric="ndcg@100",  # The metric to maximize
)

combined_test_run = fuse(
    runs=[test_run_1, test_run_2, test_run_3],  
    norm="min-max",       
    method="wsum",        
    params=best_params,
)

πŸ“– Examples

NameLink
OverviewOpen In Colab
Qrels and RunOpen In Colab
EvaluationOpen In Colab
Comparison and ReportOpen In Colab
FusionOpen In Colab
PlotOpen In Colab
Share your runs with ranxhubOpen In Colab

πŸ“š Documentation

Browse the documentation for more details and examples.

πŸŽ“ Citation

If you use ranx to evaluate results for your scientific publication, please consider citing our ECIR 2022 paper:

<details> <summary>BibTeX</summary>
@inproceedings{ranx,
  author       = {Elias Bassani},
  title        = {ranx: {A} Blazing-Fast Python Library for Ranking Evaluation and Comparison},
  booktitle    = {{ECIR} {(2)}},
  series       = {Lecture Notes in Computer Science},
  volume       = {13186},
  pages        = {259--264},
  publisher    = {Springer},
  year         = {2022},
  doi          = {10.1007/978-3-030-99739-7\_30}
}
</details>

If you use the fusion functionalities provided by ranx for conducting the experiments of your scientific publication, please consider citing our CIKM 2022 paper:

<details> <summary>BibTeX</summary>
@inproceedings{ranx.fuse,
  author    = {Elias Bassani and
              Luca Romelli},
  title     = {ranx.fuse: {A} Python Library for Metasearch},
  booktitle = {{CIKM}},
  pages     = {4808--4812},
  publisher = {{ACM}},
  year      = {2022},
  doi       = {10.1145/3511808.3557207}
}
</details>

If you use pre-computed runs from ranxhub to make comparison for your scientific publication, please consider citing our SIGIR 2023 paper:

<details> <summary>BibTeX</summary>
@inproceedings{ranxhub,
  author       = {Elias Bassani},
  title        = {ranxhub: An Online Repository for Information Retrieval Runs},
  booktitle    = {{SIGIR}},
  pages        = {3210--3214},
  publisher    = {{ACM}},
  year         = {2023},
  doi          = {10.1145/3539618.3591823}
}
</details>

🎁 Feature Requests

Would you like to see other features implemented? Please, open a feature request.

🀘 Want to contribute?

Would you like to contribute? Please, drop me an e-mail.

πŸ“„ License

ranx is an open-sourced software licensed under the MIT license.