Home

Awesome

<!-- [![Build Status](https://travis-ci.org/ANTsX/ANTsRNet.png?branch=master)](https://travis-ci.org/ANTsX/ANTsRNet) [![Codecov test coverage](https://codecov.io/gh/muschellij2/ANTsRNet/branch/master/graph/badge.svg)](https://codecov.io/gh/muschellij2/ANTsRNet?branch=master) --> <!-- badges: start -->

Contributor Covenant PubMed

<!-- badges: end -->

ANTsRNet

A collection of deep learning architectures and applications ported to the R language and tools for basic medical image processing. Based on keras and tensorflow with cross-compatibility with our python analog ANTsPyNet.

<p align="middle"> <img src="docs/figures/coreANTsXNetTools.png" width="600" /> </p>

Overview

<details> <summary>Installation</summary>

Prerequisites

You will need R (>=3.2) and C/C++ development tools including CMake (>= 3.16.3).

Installation steps

First, install keras in R

> install.packages(keras)
> keras::install_keras()

Then from the command line:

git clone https://github.com/stnava/ITKR.git
git clone https://github.com/ANTsX/ANTsRCore.git
git clone https://github.com/ANTsX/ANTsR.git
R CMD INSTALL ITKR 
R CMD INSTALL ANTsRCore
R CMD INSTALL ANTsR
R CMD INSTALL ANTsRNet

</details> <details> <summary>Architectures</summary>

Image voxelwise segmentation/regression

Image classification/regression

Object detection

Image super-resolution

Registration and transforms

Generative adverserial networks

Clustering

</details> <details> <summary>Applications</summary> </details> <details> <summary>Publications</summary> </details> <details> <summary>Acknowledgements</summary> </details>

Other resources

Documentation page

ANTsXNet self-contained examples