Awesome
Generalizable Medical Image Segmentation via Random Amplitude Mixup and Domain Specific Image Restoration
by Ziqi Zhou, Lei Qi, Yinghuan Shi.
Introduction
This repository is for our ECCV 2022 paper: Generalizable Medical Image Segmentation via Random Amplitude Mixup and Domain-Specific Image Restoration.
Pytorch Implementation
Clone this repository
git clone https://github.com/zzzqzhou/RAM-DSIR.git
cd RAM-DSIR
Download Dataset
Fundus
Download dataset Fundus (Provided by DoFE) and put images in ./dataset/fundus/
Prostate
Download our pre-processed dataset Prostate (Originally Provided by SAML) and put data in ./dataset/prostate/
Training and Testing
The training and testing process can all be done on one Nvidia RTX 2080Ti GPU with 11 GB memory.
Train on Fundus Dataset (Target Domain 0)
cd code
python -W ignore train.py --data_root ../dataset --dataset fundus --domain_idxs 1,2,3 --test_domain_idx 0 --ram --rec --is_out_domain --consistency --consistency_type kd --save_path ../outdir/fundus/target0 --gpu 0
Test on Fundus Dataset (Target Domain 0)
cd code
python -W ignore test_fundus_slice.py --model_file ../outdir/fundus/target0/final_model.pth --dataset fundus --data_dir ../dataset --datasetTest 0 --test_prediction_save_path ../results/fundus/target0 --save_result --gpu 0
Acknowledgement
Our implementation is heavily drived from Fed-DG and DoFE. Thanks to their great work.
Citation
If you find this project useful for your research, please consider citing:
@inproceedings{zhou2022ram_dsir,
title={Generalizable Medical Image Segmentation via Random Amplitude Mixup and Domain Specific Image Restoration},
author={Zhou, Ziqi and Qi, Lei and Shi, Yinghuan},
booktitle={ECCV},
year={2022}
}