Awesome
CaM: Cache Merging for Memory-efficient LLMs Inference (Paper Link)
Official PyTorch implementation of CaM (Cache Merging), as presented in our paper accepted at ICML 2024:
CaM: Cache Merging for Memory-efficient LLMs Inference </br> Yuxin Zhang*, Yuxuan Du*, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, Rongrong Ji (* indicates equal contribution) <br>
Setup
Installation instructions can be found in INSTALL.md.
Run
1. running on QA tasks
Step1: generate the data for tasks
task=openbookqa #mathqa,boolq,copa,winogrande...
shots=0
python -u generate_task_data.py \
--output-file ${task}-${shots}.jsonl \
--task-name ${task} \
--num-fewshot ${shots}
Step2: (Full cache/ Dense) generate the output with full cache
GPU=0
model=huggyllama/llama-7b
model_arch=llama # llama / gpt-neox / opt
CUDA_VISIBLE_DEVICES=${GPU} python -u run_lm_eval_harness.py \
--input-path ${task}-${shots}.jsonl \
--output-path ${task}-${shots}-${model_arch}.jsonl \
--model-name ${model} \
--model-type ${model_arch}
Step2: generate the output with Cam(Zhang, et al. 2024),StreamingLLM(Xiao, et al. 2023), H2O(Zhang, et al. 2023)
GPU=4,7
method=cam #{streamingllm, cam, h2o}
model=huggyllama/llama-7b
model_arch=llama # llama / gpt_neox / opt
task=openbookqa
shots=0
CUDA_VISIBLE_DEVICES=${GPU} python -u run_lm_eval_harness.py \
--input-path ${task}-${shots}.jsonl \
--output-path ${task}-${shots}-${model_arch}-${method}.jsonl \
--model-name ${model} \
--model-type ${model_arch} \
--start_ratio 0.1 \
--recent_ratio 0.1 \
--enable_small_cache \
--method ${method}
Step3: evaluate the result
task=openbookqa #mathqa,boolq,copa,winogrande...
method=cam #{streamingllm, cam, h2o}
shots=0
model_arch=llama # llama / gpt_neox / opt
python -u evaluate_task_result.py \
--result-file ${task}-${shots}-${model_arch}-${method}.jsonl \
--task-name ${task} \
--num-fewshot ${shots} \
--model-type ${model_arch} \
--start-ratio 0.1 \
--recent-ratio 0.1 \
--ret-path ${task}-${shots}-${model_arch}-${method}.txt
2. running on summary tasks(XSUM, CNN/Daily Mail) Step1:generate data for tasks (XSUM, CNN/Daily Mail)
python get_data.py \
--dataset cnn_dailymail
Step2: generate the output with Cam(Zhang, et al. 2024), StreamingLLM(Xiao, et al. 2023), H2O(Zhang, et al. 2023)
GPU=0,1,2,3
method=h2o #{streamingllm, cam, h2o}
task=cnndm #{xsum,multi_news,cnndm}
shot=0
ratio=0.2
model=huggyllama/llama-7b
model_arch=gpt_neox # llama / gpt_neox / opt
CUDA_VISIBLE_DEVICES=${GPU} python -u run_helm.py \
--input_path data/${task}_${shot}shot.jsonl \
--output_path ${task}-${shots}-${model_arch}-${method}.jsonl \
--model_name ${model} \
--model_arch ${model_arch} \
--enable_small_cache \
--start_ratio ${ratio} \
--recent_ratio ${ratio} \
--method ${method}
Step3: Evaluate
method=streamingllm #{streamingllm, cam, h2o}
task=cnndm #{xsum,multi_news,cnndm}
model_arch=llama
shots=0
python eval_helm.py \
--task ${task} \
--method ${method} \
--model ${model_arch} \
--input_path ${task}-${shots}-${model_arch}-${method}.jsonl\
--output_path ${task}-${shots}-${model_arch}-${method}-rouge.txt
3. running on generation tasks(wikitext, pg19 ...) Step1: switch to the directory for generation tasks
cd /cam/generate_task/examples
Step2: generate the output with Cam(Zhang, et al. 2024), StreamingLLM(Xiao, et al. 2023)
method=streamingllm # {cam, streamingllm}
model_name=huggyllama/llama-7b
task=wikitext # {wikitext, pg19}
python examples/eval_long_ppl.py \
--enable_start_recent_kv_cache \
--enable_pos_shift \
--model_name_or_path ${model_name} \
--dataset_name ${task} \
--start_size 32 \
--recent_size 32 \
--num_samples 10 \
--method ${method} \
--output_dir ${method}-${cache}-ppl.txt
(Note: If you cannot import name 'repeat_kv' from transformers library, try install transformers library on version 4.33.0 by "pip install transformers==4.33.0")
Step3: generate output with the full cache
model_name=huggyllama/llama-7b
task=wikitext # {wikitext, pg19}
python examples/eval_long_ppl.py \
--model_name_or_path ${model_name} \
--dataset_name ${task} \
--num_samples 100 \
--output_dir dense-ppl.txt
The average perplexity(ppl) for selected samples is recorded at "output_dir "
Citation
if you find this repo is helpful, please cite:
@inproceedings{zhang2024CaM,
title={CaM: Cache Merging for Memory-efficient LLMs Inference},
author={Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, Rongrong Ji},
year={2024},
booktitle={International Conference on Machine Learning},
}